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Project Goal 
 
Address the fundamental problem of modeling and solving “communities” of tasks from 
a cognitive point of view through multiple problem solving agents working cooperatively 
or competitively on different subtasks at multiple levels of granularity. 

• Agents are naturally grouped into hierarchies or communities, and such groupings 
may occur dynamically 

• Cognition model is based on a strong global coordination mechanism that relies 
on “focus” in order to elevate a low-power agent into a full-scale “thinking” agent 
o Dynamic redistribution of “brain thinking power” 

 
 
Project Members 
 
• Dr. Eugene Santos Jr. & Kiley McEvoy – Dartmouth College 

o Contributions 
 Model architecture definition 
 Conduction of small scale implementation and testing 

• Dr. Nael Abu-Ghazaleh & Vinay Kolar - SUNY Binghamton 
o Contributions 

 Multi-agent development 
 Component communication development 
 Large scale deployment 

• Dr. Mark Zhang & Zhen Guo - SUNY Binghamton 
o Contributions 

 Community Generation Theory development 
 Task relationship identification 

 
 
Project Summary 
 
In its grandest sense, Project CASIE explored the development of a computational system 
capable of high level perception and problem solving that reflects the cognitive processes 
of the human brain.  Most specifically, we concentrated on better understanding and 
modeling intuition and insight in a computational fashion.  
 
The human brain utilizes a wide variety of methods in order to comprehend and solve the 
various problems faced on a regular basis.  Much research has investigated the use of 
individual mechanisms in single-domain puzzle-type problems, but relatively little work 
has explored the dynamic use of multiple methods that is required in most real world 
applications.  Advanced abilities such as insight and creativity are inherently used to 
solve multi-domain problems.  Despite the ubiquity of these activities, their inherent 
mystique and spontaneity render their characterization difficult through conventional 
methods.  This work serves to explore various levels of problem solving as a result of the 
dynamic utilization of a coordinated set of specialized mechanisms.  It is hypothesized 
that the ability of the mind to dynamically handle complex problems is dependent on the 
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elegant structure of memory, an overseeing control, and ubiquitous events such as mind-
wandering that occur during thought.  To demonstrate these theories, a cognitive 
architecture has been designed through the conflation and further development of current 
problem solving theories from various research communities.  The developed cognitive 
architecture has been implemented in a computational environment for testing using the 
real world application of medical diagnosis.  Experimental results demonstrate how the 
coordination of various types of thought, including mind-wandering, can contribute to 
higher-level problem solving events such as insight.  It was the ultimate goal of this work 
to provide a strong foundation for future research in holistic cognitive architectures and 
high-level problem solving. 
 
While models are successful, they fail to reflect some of the inherent mechanisms of the 
brain that may be essential to real world problem solving.  Many existing models view 
solving as a goal driven, top down process that is able to work through problems with 
efficiency and accuracy.  They do not include ubiquitous events, such as mind wandering 
and attention to external stimuli that occur during problem solving.  This is due to the 
notion that such disturbances contain task-unrelated thought [1].  While this may be true, 
various accounts of insight have shown that complex ideas and solutions can result from 
mind wandering or in response to external stimuli [2].  In order for this to occur, the mind 
must be able to dynamically divert attention to thoughts that may be relevant to either 
active or dormant problems.  This ability would require several specialized processes 
operating simultaneously.  It is our hypothesis that productive human cognition is the 
result of the cooperation between multiple parallel functions, governed by a global 
coordination mechanism.  This hypothesis will be developed through the explanation of 
theories for the coordinated use of various types of thought as well as their proposed 
involvement in higher-level forms of problem solving. 
 
The term task-unrelated thought is generally used to describe brain activity not associated 
with the current goal; for example a day-dream [3].  However, various studies have 
demonstrated the functional similarities between task-related and task-unrelated thought 
[4].  Neuroimaging findings show that the patterns of neuron activation during wandering 
thought strongly overlap those observed during active problem solving.  Findings also 
demonstrate that these two types of thought are proportional to one another.  As task 
demand increases, the evidence of spontaneous unrelated thought decreases [5].  These 
studies suggest that task-related and task-unrelated thought compete for control of 
common resources in order to perform their function.  Our interpretation, however, is the 
opposite.  We believe that the common resources actually make up a mechanism able to 
coordinate both types of thought.  Furthermore, we feel that the two types of thought are 
not independent and are both utilized during problem solving.  Thus, we reject the 
notions of related and unrelated and refer to them as rational and intuitive thought. 
 
The ability to direct one’s thought in a goal oriented manner is what allows us to 
productively interact with our surroundings.  Using logic and reason, one is able to make 
decisions, infer relationships, and manipulate thought.  Naturally, these abilities play a 
large role in problem solving.  Upon encountering a problem, one must develop an 
understanding of the situation and properly select and execute an appropriate strategy.  In 
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common language, the term rational is associated with one’s behavior rather than the 
underlying thought.  For this project, it will be used to describe a deliberate thought or 
action that is “consistent with or based on reason” [6].   
 
Intuition is defined as “the act or faculty of knowing or sensing without the use of 
rational processes” [6].  Though the term is commonly associated with the spontaneous 
appearance of thoughts relative to an active problem, we will include the recollection of 
seemingly irrelevant or irrational thought.  When not involved with a computationally 
intensive task, one may find themselves humming a random song or suddenly recalling a 
childhood memory.  If asked, the source or reason for such thoughts cannot be explained.  
In some instances, the unrequested thoughts consume all of one’s consciousness and can 
be focused on.  Other times, they seem to occur in the background of one’s mind, barely 
perceivable.  This feeling is often experienced immediately prior to recalling a necessary 
bit of information, such as a word to describe a situation.  One may have a strong feeling 
of awareness for a word matching the scenario, but can not immediately verbalize it.  
 
It is within our hypothesis that both problem-relevant and problem-irrelevant intuitions 
occur through the same mechanism.  We suggest that intuitive thought occurs due to 
associations between concepts on a neurological level.  One can agree that a particular 
stimulus such as the smell of the ocean is capable of eliciting memories of past 
experiences involving a beach.  We will subscribe to the well-supported belief that this is 
due to memories existing as overlapping neural networks within the brain that host our 
experiences within their connected structure [7].  Based on the principle of synchronous 
convergence, networks that are active simultaneously will form a connection and later 
will be capable of activating one another.  In other words, concepts existing in 
consciousness together will be encoded into memory with an association.  Thus, one is 
prone to develop an association with the smell of the ocean and the visual representation 
of the beach. 
 
As rational and intuitive thought differ greatly in behavior, the mind would be very 
limited if only one existed.  The abilities of both mechanisms must be coordinated in 
order for the brain to productively interact with a dynamic environment.  We pose that 
this coordination is managed by an overseeing cognitive mechanism, which will be 
referred to as meta-cognition.  The term has been used by many as a buzzword in 
experimental education and psychology to describe the ability to stay on task.  For the 
purposes of this project, a more specific definition for meta-cognition will be used, 
identifying its abilities as “control of learning, planning and selecting strategies, 
monitoring the progress of learning, correcting errors, analyzing the effectiveness of 
learning strategies, and changing learning behaviors and strategies when necessary.” [8] 
These abilities will be extended to include control of multiple tasks and monitoring semi-
conscious thought.  To describe the interaction of meta-cognition, we pose a spectrum of 
coordination spanning proportional levels of rational and intuitive thought. 
 
A state consisting primarily of rational thought is usually entered following the discovery 
of a relevant procedure that can now be applied.  For example, in working on a long 
division problem, the method is known and solving the problem is simply a matter of 
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computation.  At this state, meta-cognition has allocated the majority of its attention 
away from intuitive thought.  Studies have shown that during intense task related thought, 
there is an absence of activity in brain regions associated with monitoring of sensory 
information [9].  Thus, the brain is less subject to distraction from external stimuli.     
 
When engaged in primarily intuitive thought, meta-cognition allows thought to flow 
freely in response to concept activations from both external and internal sources.  This 
end of the spectrum is representative of “day-dreaming” or “mind-wandering”.  For 
example, one might be reading about insects and begin to think about beetles, followed 
by a daydream of playing on stage with John Lennon.  Though this type of thought may 
not be working on a particular task, brain regions typically associated with problem 
solving are occasionally recruited during intuitive thought [4].  It is believed this is to 
evaluate and retrieve factual information as needed in day-dreaming.  This type of free 
flowing thought often leads into task oriented thought, particularly when the mind 
encounters a subject of interest.  
 
Collaborative use of rational and intuitive thought occurs when the mind is working 
towards a complex goal, being one that requires the solving of more than one sub-goal.  
When a problem is encountered, rational thought is used in attempt to expand and build 
the problem through logic and reasoning.  As rational thought traverses memory, 
networks will be activated, based on the simultaneous convergence principle.  These 
activations will potentially trigger intuitive thoughts.  The extent of intuition is correlated 
with the activity of rational thought.  If rational thought moves quickly through the mind, 
such as in solving a familiar task, there is less chance for distantly connected networks to 
become activated, limiting abstractly related solutions.  Conversely, if rational thought is 
working slowly, such as when one is unsure how to solve a problem, distantly related 
networks have a greater chance of being activated through intuition.  As intuitive thought 
occurs, it is observed by meta-cognition.  If the activated concept is thought to be of 
interest, meta-cognition will redirect the global focus to the newly activated idea. 

 
There are several conflicting views as to what types of problem solving can be classified 
as insight.  Some feel that insight includes suddenly solving a puzzle-type problem while 
actively attempting it [10].  Within our hypothesis, this is merely a moment of complex 
intuition preceded by a restructuring of the problem.  In our opinion, the fascination with 
insight is in the ability to unintentionally realize the relation of a current situation to an 
inactive problem residing in a nearly infinite memory.  Thus, we will define insight as the 
inadvertent realization of the applicability of an idea or situation to a previously unrelated 
problem that results in a novel and productive integration of the two.   
 
We believe that insight is heavily dependent on mind wandering and the global 
awareness of one’s meta-cognition.  While working on a problem, one develops 
associations and factual links between concepts in memory, allowing the problem to be 
recalled later in the same manner.  Meta-cognition becomes aware of these problems 
knowing they are of global interest.  Thus, if any relation becomes active through 
intuitive thought, meta-cognition immediately diverts attention to mapping the activation 
to the problem.  Sometimes this recollection might occur following strong activation of a 
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network directly related to the problem, such as suggested in the Opportunistic 
Assimilation hypothesis.  However, we suggest that activations can occur based on more 
abstract relations, particularly due to the overlapping of neural networks.  For example, 
for Archimedes, the conceptualization of his body causing the water to overflow may 
have partially overlapped the existing network containing his problem.  Through this 
activation, intuitive thought could build a perceivable portion of the network, allowing 
meta-cognition to initiate mapping. 
 
In summary, our hypothesis states that all levels of problem solving occur through the 
dynamic use of a set of mechanisms whose functions are coordinated by a meta-cognitive 
component.  Rational thought serves to perform cognitive tasks utilizing factual 
information stored in memory.  Traversal of memory networks during such tasks 
activates related networks causing intuitive thought.  These autonomic activations may or 
may not be perceived depending on the current focus of meta-cognition.  When working 
on a computational intensive task, meta-cognition will focus on management of rational 
thought and suppression of disruptive thought.  In periods of rest, intuitive thought is 
unrestricted and “mind-wandering” may occur.  In solving novel problems, both types of 
thought are used to develop the problem and discover relevant concepts.  Occasionally, a 
unique traversal path through memory may simultaneously activate two or more 
previously unrelated networks.  Insight is considered to occur if such activation results in 
a beneficial integration of the networks. 
 
We will now describe our implementation and testing of the CASIE Cognitive 
Architecture. 
 
 
CASIE Cognitive Architecture 
 
In order to demonstrate and test the discussed hypothesis for coordinated function, our 
theoretical mechanisms were integrated into a cognitive architecture.  The CASIE 
architecture is composed of theoretical mechanisms able to process data from a user and 
cooperatively solve a range of real-world type problems.  Medical diagnosis had been 
chosen as the testing domain due to its wealth of information and manageable data 
structure.  We now explain the logic behind the expression of our theories through a set 
of architecture components. 
 
Medical diagnosis was selected as a testbed.  Selecting a domain in which to test CASIE 
was inherently difficult.  One can design a theoretical architecture capable of handling all 
types of information understandable by humans.  Yet, from a computational standpoint, 
this completeness would be overly ambitious.  Thus, the selected testbed had to be 
complex enough to be representative of real world problem solving scenarios but also 
remain adoptable by a computational environment.  Four criteria were specified to meet 
these goals.  The main attraction to the use of medical diagnosis was, despite the nearly 
infinite domain, information used in problem solving could be managed and was readily 
available.   
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The CASIE architecture consists of six components operating in parallel to collectively 
complete tasks through various methods.  These components serve to manage the 
cooperation of uncontrolled and controlled processes involved in problem finding and 
solving.  Attention is dynamically allocated depending on the architecture’s state.  A 
visual representation of the architecture can be seen in Figure 1. 
 

 
 
 
Each component has a specific role in the architecture and its behavior is dependent on 
the state of the rest of the system.  The six components, Information, Reasoning, 
Connection, Regulatory, Focus, and Frontier, will be briefly explained through 
descriptions of basic function and detailed interaction examples. 
 
The Information component is representative of one’s long term memory.  It has been 
designed to host encountered problems, related information, solution procedures, and 
methods to validate potential solutions.  For the domain of medical diagnosis, these data 
types have been specified into patients, symptoms, diagnoses, and tests.  Patients serve as 
access points to problems.  When a doctor is presented with a diagnosis case, related 
information is gathered.  This information primarily includes the patient’s symptoms, 
which are then used to find potential diagnoses.  A doctor may then validate their beliefs 
or gain new information though the use of medical tests. 
 
The data stored in Information is traversed and utilized based on relationships between its 
entities.  These relationships are classified as either factual or associative based on their 
method of creation.  As implied, factual relationships represent information one feels is 
definitively true.  For ease of implementation as well as the aim to make the architecture 
expandable to other domains, factual links are represented through four single phrases: 
“has”, “is”, “can cause”, and “tests for.”  The use of these phrases is outlined in Table 1. 
 
 
 

Figure 1: CASIE components and available communication channels 
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Table 1: Factual relationship phrases 
 

 
 
 
 
 
 
 

 
The second type of relationship in Information serves to represent links within data 
created through environment interaction and processing.  This type of relation utilizes the 
word “association” to signify a relationship between entities.  Within CASIE, associative 
relationships are created between simultaneously active entities, based upon the 
aforementioned principle of synchronous convergence.  A diagram of the CASIE 
memory structure can be seen in Figure 2. 
 

 
 
 
The Reasoning component is responsible for carrying out tasks associated with rational 
thought.  As a task is worked on, Reasoning temporarily hosts active task knowledge 
within what will be referred to as the whiteboard.  Based on contents of the whiteboard, 
Reasoning selects appropriate procedures to advance towards a goal.  These procedures 
can include recalling related data from Information, dividing tasks into subtasks, making 
decisions, and requesting activity from other components.  To perform these procedures, 
Reasoning utilizes factual relationships between knowledge in Information.  Reasoning is 
also responsible for the direct manipulation and addition of such knowledge. 
 

Phrase Signifies Used to related Example 
has Possession Patients to Diagnoses 

Patients to Symptoms 
John ‘has’ Fatigue 

is Hierarchal/ Synonymical Symptoms to Symptoms 
Diagnoses to Diagnoses 

Lung Cancer ‘is’ Cancer 
Tiredness ‘is’ Fatigue 

can cause Cause & Effect Diagnoses to Symptoms Flu ‘can cause’ Fever 
tests for Solution validation Tests to Diagnoses MRI ‘tests for’ Tumor 

Figure 2: Visual representation of CAISE memory 
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The processes of the Connection component are representative of intuitive thought.  
Based on the contents of the whiteboard within Reasoning, Connection continuously 
retrieves associated knowledge from Information.  If the system is moving rapidly from 
task to task, Connection is only capable of finding associations immediately related to the 
task’s domain.  However, when a task cannot be solved or one is not active, Connection 
is able to seek deeper associations. 
 
The Frontier component is responsible for managing CASIE’s interaction with the 
outside world.  When new information enters the system, Frontier makes it available to 
the other components.  Similarly, any information that must be expressed internally is 
presented through Frontier.  At this implementation, Frontier has been developed to 
handle textual information.  However, more advanced versions of the component could 
be representative of a more complete sensory system, including auditory and visual 
processing as well as mechanical action.  
 
The Focus component serves to maintain a list of active and inactive problems.  While 
working on a task that involves multiple subtasks, Focus hosts the list of jobs that must 
be done to reach the overall goal.  Additionally if tasks are interrupted or CASIE reaches 
an impasse, tasks are stored in Focus as dormant tasks to be attempted later.   
 
The Regulatory component serves to manage the behavior of CASIE from a global 
perspective.  Its function is analogous to the concept of meta-cognition.  When new tasks 
are encountered, Regulatory determines whether or not the incoming task should interrupt 
the current activity of the system.  When engaged in a task, Regulatory monitors the 
system activity to ensure that all components are working towards the global goal.  
Additionally, if any localized activity seems to relate to either the task at hand or a 
dormant task in Focus, Regulatory will shift attention to investigate the use of that 
thought.  During times of inactivity, Regulatory recalls unsolved tasks from Focus to be 
re-attempted.  
 
To achieve problem solving ability CASIE’s components work cooperatively.  The 
various interactions are outlined in Table 1 and their use is detailed through the examples 
following. 
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Table 2: Component Interactions 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In CASIE, insight moments occur when Regulatory realizes the application of current 
information to the solution of a dormant problem residing in Focus.  Upon reaching an 
impasse, the task as well as all of its failed subtasks are stored in Focus.  Additionally 
associations between the symptom set and the patient are created, based on the principle 
of synchronous convergence.  If during subsequent thought, the association becomes 
active in Connection, Regulatory interrupts the system and commands Reasoning to 
attempt to apply the newly learned information.  For example, when diagnosing the 
patient ‘Sandy’, shown in Figure 3a, an impasse is reached after expanding the two 
symptoms as much as possible.  The case is stored in Focus as an unsolved task and an 
association is created between ‘Skin Symptom + Neurological Symptom’ and ‘Sandy’.  
When diagnosing the patient ‘Vinny’, shown in Figure 3b, Reasoning begins to expand 
the symptom set.  Ordinarily, these expansions would be disregarded and most likely not 
ever perceived, as Connection discovers an association with the diagnosis 
‘Neurofibromatosis’.  However as ‘Mass in Spinal Cord’ and ‘Tan Skin Patches’ expand 
to ‘Neurological Symptom’ and ‘Skin Symptom’ respectively, Connection also discovers 
the association to the unsolved case of ‘Sandy’.  Upon this realization, Regulatory 
instructs Reasoning to attempt to map the analog case to the base.  Reasoning determines 
that Vinny’s diagnosis is capable of causing Sandy’s symptoms and the diagnosis is 
validated through a test, shown in Figure 3c. 
 
 

Components Interaction 
Frontier & Regulatory As commands and information enter the system, 

Frontier passes them to Regulatory to handle them. 
Regulatory also reports system status to Frontier.   

Frontier & Reasoning While learning, information is sent from Frontier to 
Reasoning for storage.  External actions are requested by 
Reasoning through Frontier. 

Regulatory & Reasoning Regulatory sends commands to Reasoning and observes 
its activity. 

Focus & Reasoning When tasks are interrupted, or an impasse is reached, 
Reasoning sends tasks to Focus.  Reasoning also passes 
sub-tasks to Focus. 

Focus & Regulatory Regulatory uses the dormant task list within Focus to 
determine activity during periods of inactivity. 

Reasoning & Information Reasoning recalls knowledge from Information using 
factual relationships.  While learning, or inference, 
Reasoning stored knowledge in Information. 

Connection & Information Connection recalls knowledge from Information using 
association relationships. 
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Implementation of the CASIE architecture into a computer environment occurred as a 
collaborative effort between two teams.  The majority of the infrastructure and 
component communication was developed by the team at SUNY Binghamton, while the 
cognitive algorithms were done by the Dartmouth team.  Cougaar, a JAVA software 
architecture that allows for building distributed agent based applications, was selected as 
the platform for CASIE’s development.  Computer implementation allowed for 
demonstration of the aforementioned theories through experiments using the medical 
diagnosis testbed. 
 
Synopsis of Experiments 

 
The main theme in our hypothesis is that insight occurs as a result of the monitoring of 
autonomic intuitive thought through meta-cognition.  To demonstrate this theory, several 
tests were conducted in attempt to trigger an insightful moment within CASIE.  Tests 
consisted of a target problem designed to reach an impasse, and a base problem which 
could be solved given the contents of CASIE’s memory.  In each test CASIE was first 
presented with the target problem.  Either immediately following or after intermediate 
cases, the base problem was presented.  Three sets of scenarios were designed to 
demonstrate the various levels of insight.  One set involved a base problem which would 
directly overlap a portion of the target problem structure.  Successful diagnosis of the 
target problem when solving the base, would demonstrate the spontaneous recollection of 

Figure 3: A. First diagnosis leads to impasse, as no associations exist. B. 
Expansion of another patient’s symptoms leads to association with 
‘Neurofibromatosis’. C. Following insight moment, ‘Neurofibromatosis’ is 
validated as a potential diagnosis 
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an unsolved problem based on congruent surface attributes.  In a second set of scenarios, 
expansions of the entities from the base problem would coincide with those of the target 
problem.  Successful diagnosis of the target problem in this case, would demonstrate that 
the inadvertent activation of factually related networks is capable of triggering insight.  A 
third set of tests involved base and target entities with similar but not exact matches, such 
as ‘Lung Complication’ and ‘Lung Disease’.  Successful diagnosis in this case would 
demonstrate that the partial activation of networks can trigger insight. 
 
The results from our testbed experiments were congruent with our expectations.  
Successful diagnosis of first type of scenarios demonstrated that through direct activation 
of entities from an unsolved problem, the problem could be recalled through meta-
cognitive processes and subsequently reattempted using newly learned information.  We 
believe this to be a weak form of insight as it utilizes the channels of intuition and meta-
cognition however activation of the exact problem components is required.  As these full 
activations would be conscious, it is predicted that the solver would be capable of 
explaining the train of thought that led to the moment of realization, which counters our 
definition of insight.  The second set of scenarios demonstrates a process closer to our 
definition of insight, in which the unsolved problem is recalled through automatic 
activation of related entities.  In these cases, such activations may or may not be 
conscious depending on the attention of meta-consciousness.  The scenarios from this 
experiment represent cases that require a full activation of an entities network.  However, 
the ultimate form of insight has been described as only requiring partial activation of a 
network for realization to occur.  This form was represented in the third set of scenarios.  
As expected, CASIE was unable to solve these types of cases due to the limitation of 
textual memory.  Demonstration of this type of insight would require true distributed 
memory. 
 
Conclusions 
 
It is hard to argue that the human brain is not an advanced organ of extensive capabilities. 
Most are fascinated that a three-pound mass of organic material is able to compose 
artistic masterpieces and develop advanced scientific theories.  Even the simple task of 
deciding what to eat for dinner is somewhat intriguing.  The brain can deal with a wide 
range of tasks using various methods.  Much effort has gone into determining how the 
brain is able to solve problems at particular levels, but few have ventured to explain all 
levels of problem solving through the use of common resources in the mind.  This work 
has attempted this task through the presentation of a theoretical cognitive architecture. 
Our findings demonstrate that all levels of problem solving can be based on various 
levels of coordination between specialized mechanisms operating in parallel.  Rather than 
a result of search speed, extensive abilities can result from elegance of storage, automatic 
activation of concepts, and global management. 
 
The current computational version of the CASIE architecture serves to demonstrate the 
functionality of our primary theories.  However, implementation of several other 
functions is required to fully exploit the power of the architecture.  Future efforts could 
include the addition of learning capability through both inference and experience. 
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Following this addition, CASIE will be able to internally manipulate the data stored in 
Information.  Following a complex diagnosis, associations would be created between 
elements of the problem structure.  Such associations would aid in the future diagnosis of 
related problems.  Other additions include decision making capability.  This would allow 
CASIE to handle more realistic scenarios in which symptoms associate with multiple 
diagnoses.  Determining which to investigate first would depend on congruence with the 
symptom set and diagnosis severity. 
 
Following the addition of learning and decision making, the CASIE architecture would 
be suitable for the addition of advanced abilities.  As realized throughout development, 
higher-level forms of problem solving and creativity are highly dependent on a wealth of 
interrelated information across many domains.  It is hypothesized that by exposing 
CASIE to a large source of searchable information, the creative ability and occurrence of 
insight would be significantly increased.  Unfortunately the task of manually developing 
a bounded knowledge base is not only a laborious task; it also defeats the purpose of 
developing a system able to apply its perceptions to stored problems.  Thus, CASIE 
would require a module allowing it to acquire information as easily as humans.  As some 
readers may have noticed, the structure within the Information component strongly 
resembles proposed structures of the semantic web, which is foreseen as the next 
implementation of the internet.  The semantic, or machine searchable web, would allow 
CASIE to gain factual information from a nearly infinite textual source.  Currently 
CASIE is limited to gaining information through a human user.  If an impasse is reached, 
the system cannot seek additional information as a real person is able to do.  Using a 
semantic web interface, CASIE would be capable of learning new symptoms, diagnoses 
and tests as well as their relationships. 
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Abstract

Existing graph partitioning approaches are mainly
based on optimizing edge cuts and do not take the distri-
bution of edge weights (link distribution) into consider-
ation. In this paper, we propose a general model to parti-
tion graphs based on link distributions. This model for-
mulates graph partitioning under a certain distribution
assumption as approximating the graph affinity matrix
under the corresponding distortion measure. Under this
model, we derive a novel graph partitioning algorithm to
approximate a graph affinity matrix under various Breg-
man divergences, which correspond to a large exponen-
tial family of distributions. We also establish the con-
nections between edge cut objectives and the proposed
model to provide a unified view to graph partitioning.

Introduction
Graph partitioning is an important problem in many machine
learning applications, such as circuit partitioning, VLSI de-
sign, task scheduling, bioinformatics, and social network
analysis. Existing graph partitioning approaches are mainly
based on edge cut objectives, such as Kernighan-Lin objec-
tive (Kernighan & Lin 1970), normalized cut (Shi & Malik
2000), ratio cut (Chan, Schlag, & Zien 1993), ratio asso-
ciation(Shi & Malik 2000), and min-max cut (Dinget al.
2001).

The main motivation of this study comes from the fact that
graphs from different applications may have very different
statistical characteristics for their edge weights. Specifically,
the graphs may have very different link distributions, where
the link distribution refers to thedistribution of edge weights
in a graph. For example, in a graph with binary weight
edges, the link distribution can be modeled as a Bernoulli
distribution; in a graph with edges of real value weights, the
link distribution may be modeled as an exponential distrib-
ution or a normal distribution. This fact naturally raises the
following questions: is it appropriate to use edge cut objec-
tives for all kinds of graphs with different link distributions?
If not, what kinds of graphs the edge cut objectives work
well for? How to make use of link distributions to partition
different types of graphs? This paper attempts to answer
these questions.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Another motivation of this study is to derive an effective
algorithm to improve the existing graph partitioning algo-
rithms on some aspects. For example, the popular spectral
approaches involve expensive eigenvector computation and
extra post-processing on eigenvectors to obtain the partition-
ing; the multi-level approaches such as METIS (Karypis &
Kumar 1998) restrict partitions to have an equal size.

In this paper, we propose a general model to partition
graphs based on link distributions. The key idea is that by
viewing the link distribution of a graph as a mixture of link
distributions within and between different partitions, we can
learn the mixture components to find the partitioning of the
graph. The model formulates partitioning a graph under a
certain distribution assumption as approximating the graph
affinity matrix under the corresponding distortion measure.
Second, under this model, we derive a novel graph partition-
ing algorithm to approximate a graph affinity matrix under
various Bregman divergences, which correspond to a large
exponential family distributions. Our theoretic analysis and
experiments demonstrate the the potential and effectiveness
of the proposed model and algorithm. Third, we also es-
tablish the connections between the proposed model and the
edge cut objectives to provide a unified view to graph parti-
tioning.

We use the following notations in this paper. Capital let-
ters such asA, B andC denote matrices;Aij or [A]ij de-
note the(i, j)th element inA; small boldface letters such
asa, b andc denote column vectors. A graph is denoted
by G = (V, E , A), which is made up of a set of verticesV
and a set of edgesE , and the affinity matrixA of dimension
|V| × |V|, whose entries represent the weights of the edges.

Related Work
Graph partitioning divides a graph into subgraphs by finding
the best edge cuts of the graph. Several edge cut objectives,
such as the average cut (Chan, Schlag, & Zien 1993), aver-
age association (Shi & Malik 2000), normalized cut (Shi &
Malik 2000), and min-max cut (Dinget al. 2001), have been
proposed. Various spectral algorithms have been developed
for these objective functions (Chan, Schlag, & Zien 1993;
Shi & Malik 2000; Ding et al. 2001). These algorithms
use the eigenvectors of a graph affinity matrix, or a matrix
derived from the affinity matrix, to partition the graph.

Multilevel methods have been used extensively for graph
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partitioning with the Kernighan-Lin objective, which at-
tempts to minimize the cut in the graph while maintaining
equal-sized clusters (Bui & Jones 1993; Hendrickson & Le-
land ; Karypis & Kumar 1998). In multilevel algorithms,
the graph is repeatedly coarsened level by level until only a
small number of nodes are left. Then, an initial partitioning
on this small graph is performed. Finally, the graph is un-
coarsened level by level, and at each level, the partitioning
from the previous level is refined using a refinement algo-
rithm.

Recently, graph partitioning with an edge cut objec-
tive has been shown to be mathematically equivalent to an
appropriately weighted kernel k-means objective function
(Dhillon, Guan, & Kulis 2004; 2005). Based on this equiva-
lence, the weighted kernel k-means algorithm has been pro-
posed for graph partitioning (Dhillon, Guan, & Kulis 2004;
2005). Yu, Yu, & Tresp (2005) propose graph-factorization
clustering for the graph partitioning, which seeks to con-
struct a bipartite graph to approximate a given graph. Long
et al. (2006) propose a framework of relation summary net-
work to cluster K-partite graphs.

Another related field is unsupervised learning with Breg-
man divergences (S.D.Pietra 2001; Wang & Schuurmans
2003). Banerjeeet al. (2004b) generalizes the classic k-
means to Bregman divergences. A generalized co-clustering
framework is presented by Banerjeeet al. (2004a) wherein
any Bregman divergence can be used in the objective func-
tion.

Model Formulation
We first define the link distribution as the follows.

Definition 1. Given a graphG = (V, E , A), the link distri-
bution fV1V2 is the probability density of edge weights be-
tween nodes inV1 andV2, whereV1,V2 ⊆ V.

Based on Definition 1, the link distribution for the
whole graphG is fVV . The model assumption is that
if G has k disjoint partitionsV1, . . . ,Vk, then fVV =∑

1≤i≤j≤k πijfViVj , whereπij is the mixing probability
such that

∑
1≤i≤j≤k πij = 1. Basically, the assumption

states that the link distribution of a graph is a mixture of the
link distributions within and between partitions. The intu-
ition behind the assumption is that the vertices within the
same partition are related in a (statistically) similar way to
each other and the vertices from different partitions are re-
lated in different ways to each other from those within the
same partition. In Section 5, we show that the traditional
edge cut objectives also implicitly make this assumption un-
der a normal distribution with extra constraints.

Let us have an illustrative example. Figure 1(a) shows
a graph of six vertices and seven unit weight edges. It is
natural to partition the graph into two components,V1 =
{v1, v2, v3} andV2 = {v4, v5, v6}. The link distribution
of the whole graph can be modeled as a Bernoulli distribu-
tion fVV(x; θVV) with the parameterθVV = 7

15 (the num-
ber of edges in the graphis 7 and the number of possi-
ble edges is 15). Similarly, the link distributions for edges
within and betweenV1 andV2 are Bernoulli distributions,
fV1V1(x; θV1V1) with θV1V1 = 1, fV2V2(x; θV2V2) with
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Figure1: A graph with twopartitions(a) and its graph affin-
ity matrix (b).
θV2V2 = 1, andfV1V2(x; θV1V2) with θV1V2 = 1

9 . Note
thatfVV is a mixture offV1V1 , fV2V2 andfV1V2 , whichcan
be verified byθVV = 3

15θV1V1 + 9
15θV1V2 + 3

15θV2V2 (the
mixing probability for fV1V2 , 9

15 , follows the fact thatthe
numberof possible edges betweenV1 andV2 is 9; similarly
for other proportion probabilities).

Learning mixture components of the link distribution of a
graph is much more difficult than learning a traditional mix-
ture model, since the graph structure needs to be considered,
i.e., our goal is to find the mixture components associated
with subgraphs and not just to simply draw the similar edges
from anywhere in the graph to form a component. For exam-
ple, in Figure 1(a), without considering the graph structure,
the edge weights from two partitionsV1 andV2 cannot be
separated. To tackle this difficulty, we model the problem
based on the graph affinity matrix, which contains all the
information for a graph.

Figure 1(b) shows the graph affinity matrix for the graph
in Figure 1(a). We observe that if the vertices within
the same partition are arranged together, the edge weights
within and between partitions form the diagonal blocks and
off-diagonal blocks, respectively. Hence, learning the link
distribution in a graph is equivalent to learning different dis-
tributions for non-overlapping blocks in the graph affinity
matrix. To estimate the sufficient statistic for each block,
we need to solve the problem of likelihood maximization.
It is shown that maximizing likelihood under a certain dis-
tribution corresponds to minimizing distance under the cor-
responding distortion measure (Collins, Dasgupta, & Reina
2001). For example, the normal distribution, Bernoulli dis-
tribution, multinomial distribution and exponential distrib-
ution correspond to Euclidean distance, logistic loss, KL-
divergence and Itakura-Satio distance, respectively. There-
fore, learning the distributions of the blocks in a graph affin-
ity matrix can be formulated as approximating the affinity
matrix under a certain distortion measure. Formally, we de-
fine graph partitioning as the following optimization prob-
lem of matrix approximation.

Definition 2. Given a graphG = (V, E , A) whereA ∈
Rn×n, a distance functionD, and a positive integerk, the
optimized partitioning is given by the minimization,

min
C∈{0,1}n×k,B∈Rk×k

D(A,CBCT ), (1)

where C ∈ {0, 1}n×k is an indicator matrix such that∑
j Cij = 1, i.e.,Cij = 1 indicates that theith vertex be-

longs to thejth partition, andD is a separable distance
function such thatD(X, Y ) =

∑
i,j D(Xij , Yij).
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We call the model in Definition2 as the Graph Partition-
ing with Link Distribution (GPLD). GPLD provides not only
the partitioning of the given graph, which is denoted by the
partition indicator matrixC, but also the partition repre-
sentative matrixB, which consists of the sufficient statistics
for edge weights within and between partitions. For exam-

ple, B =
[

1 1/9
1/9 1

]
for the example in Fig 1(b).B also

provides an intuition about the quality of the partitioning,
since the larger the difference between the diagonal and the
off-diagonal elements, the better the partitions are separated.
Note that GPLD does not restrictA to be symmetric or non-
negative. Hence, it is possible to apply GPLD to directed
graphs or graphs with negative weights, though in this pa-
per our main focus is undirected graphs with non-negative
weights.

Algorithm Derivation
First we derive an algorithm for GPLD model based on the
most popular distance function, Euclidean distance function.
Under Euclidean distance function, our task is

min
C∈{0,1}n×k,B∈Rk×k

||A− CBCT ||2. (2)

We prove the following theorem which is the basis of our
algorithm.

Theorem 3. If C ∈ {0, 1}n×k andB ∈ Rk×k
+ is the optimal

solution to the minimization in(2), then

B = (CT C)−1CT AC(CT C)−1. (3)

Proof. The objective function in Definition 2 can be ex-
panded as follows.

L = ||A− CBCT ||2
= tr((A− CBCT )T (A− CBCT ))

= tr(AT A)− 2tr(CBCT A) + tr(CBCT CBCT )

Take the derivative with respect toB, we obtain

∂L

∂B
= −2CT BC + 2CT CBCT C. (4)

Solve ∂L
∂B = 0 to obtain

B = (CT C)−1CT AC(CT C)−1; (5)

Thiscompletesthe proof of the theorem.

Basedon Theorem 3, we propose analternative optimiza-
tion algorithm, which alternatively updatesB andC until
convergence. We first fixC and updateB. Eq (3) in Theo-
rem 3 provides an updating rule forB,

B = (CT C)−1CT AC(CT C)−1. (6)

This updating rule can be implemented more efficiently
than it appears. First, it does not really involve comput-
ing inverse matrices, sinceCT C is a special diagonal ma-
trix with the size of each cluster on its diagonal such that
[CT C]pp = |πp|, where|πp| denotes the size of thepth par-
titioning; second, the product ofCT AC can be calculated

without normal matrix multiplication, sinceC is an indica-
tor matrix.

Then, we fixB and updateC. Since each row ofC is an
indicator vector with only one element equal to 1, we adopt
the re-assignment procedure to updateC row by row. To
determine which element of thehth row of C is equal to 1,
for p = 1, . . . , k, each time we letChp = 1 and compute the
objective functionL = ||A − CBCT ||2, which is denoted
asLp, then

Chp∗ = 1 for p∗ = arg min
p

Lp (7)

Note that when we update thehth row of C, the necessary
computation involves only thehth row or column ofA and
CBCT .

Therefore, updating rules (6) and (7) provide a new graph
partitioning algorithm, GPLD under Euclidean distance.

Presumably for a specific distance function used in De-
finition 2, we need to derive a specific algorithm. How-
ever, a large number of useful distance functions, such as
Euclidean distance, generalized I-divergence, and KL di-
vergence, can be generalized as the Bregman divergences
(S.D.Pietra 2001; Banerjeeet al. 2004b), which correspond
to a large number of exponential family distributions. More-
over, the nice properties of Bregman divergences make it
easy to generalize updating rules (6) and (7) to all Breg-
man divergences. The definition of a Bregman divergence
is given as follows.

Definition 4. Given a strictly convex function,φ : S 7→ R,
defined on a convex setS ⊆ Rd and differentiable on the
interior of S, int(S), the Bregman divergenceDφ : S ×
int(S) 7→ [0,∞) is defined as

Dφ(x, y) = φ(x)− φ(y)− (x− y)T∇φ(y), (8)

where∇φ is the gradient ofφ.

Table 1 shows a list of popular Bregman divergences and
their corresponding Bregman convex functions. The follow-
ing Theorem provide an important property of Bregman di-
vergence.

Theorem 5. Let X be a random variable taking values in
X = {xi}n

i=1 ⊂ S ⊆ Rd following v. Given a Bregman
divergenceDφ : S × int(S) 7→ [0,∞), the problem

min
s∈S

Ev[Dφ(X, s)] (9)

has a unique minimizer given bys∗ = Ev[X].
The proof of Theorem 5 is omitted (please refer

(S.D.Pietra 2001; Banerjeeet al. 2004b)). Theorem 5 states
that the Bregman representative of a random variable is al-
ways the expectation of the variable. Hence, when given a
sample of a random variable, the optimal estimation of the
Bregman representative is always the mean of the sample.
Under the GPLD model,Bpq is the Bregman representative
of each block of an affinity matrix. WhenC is given, i.e., the
membership of each block is known, according to Theorem
5, Bpq is obtained as the mean of each block,

Bpq =
1

|πp||πq|
∑

i∈πp,j∈πq

Aij , (10)
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Table 1: A list of Bregmandivergences and the corresponding convex functions.
Name Dφ(x, y) φ(x) Domain

Euclidean distance ||x− y||2 ||x||2 Rd

GeneralizedI-divergence
Pd

i=1 xi log(xi
yi

)−Pd
i=1(xi − yi)

Pd
i=1 xi log(xi) Rd

+

Logistic loss x log(x
y
) + (1− x) log( 1−x

1−y
) x log(x) + (1− x) log(1− x) {0, 1}

Itakura-Saitodistance x
y
− log xy − 1 − log x (0,∞)

Hingeloss max{0,−2sign(−y)x} |x| R \ {0}
KL-divergence

Pd
i=1 xi log(xi

yi
)

Pd
i=1 xi log(xi) d-Simplex

Mahalanobisdistance (x− y)T A(x− y) xT Ax Rd

Algorithm 1 Graph Partitioning with BregmanDivergences
Input: A graph affinity matrixA, a Bregman divergence
Dφ, and a positive integerk.
Output: A partition indicator matrixC and a partition rep-
resentative matrixB.
Method:

1: Initialize B.
2: repeat
3: for h = 1 to n do
4: Chp∗ = 1 for p∗ = arg minp Lp whereLp denotes

Dφ(A,CBCT ) for Chp = 1.
5: end for
6: B = (CT C)−1CT AC(CT C)−1.
7: until convergence

whereπp andπq denotethepth and theqth cluster,respec-
tively, and1 ≤ p ≤ k, 1 ≤ q ≤ k, 1 ≤ i ≤ n and
1 ≤ j ≤ n. If we write Eq (10) in a matrix form, we
obtain Eq. (3), i.e., Theorem 3 is true for all Bregman di-
vergences. Hence, updating rule (6) is applicable to GPLD
with any Bregamen divergneces. For updating rule (7), there
is only a minor change for a given Bregman divergence, i.e.,
we calculate the object functionL based on this given breg-
man divergence.

Therefore, we obtain a general graph partitioning al-
gorithm, Graph Partitioning with Bregman Divergences
(GPBD), which is summarized in Algorithm 1. Unlike the
traditional graph partitioning approaches, this simple algo-
rithm is capable of partitioning graphs under different link
distribution assumptions by adopting different Bregman di-
vergences. The computational complexity of GPBD can be
shown to beO(tn2k) for t iterations. For a sparse graph, it
is reduced toO(t|E|k). GPBD is faster than the popular
spectral approaches, which involve expensive eigenvector
computation (typicallyO(n3)) and extra post-processing on
eigenvectors to obtain the partitioning. Comparing with the
multi-level approaches such as METIS (Karypis & Kumar
1998), GPBD does not restrict partitions to have an equal
size.

The convergence of Algorithm 1 is guaranteed based on
the following facts. First, based on Theorem 3 and Theorem
5, the objective function is non-increasing under updating
rule (6); second, by the criteria for reassignment in updating
rule (7), it is trivial to show that the objective function is
non-increasing under updating rule (7).

A Unified View to Graph Partitioning
In this section, we establish the connections between the
GPLD model and the edge cut objectives to provide a unified
view for graph partitioning.

In general, the edge cut objectives, such as ratio associ-
ation (Shi & Malik 2000), ratio cut(Chan, Schlag, & Zien
1993), Kernighan-Lin objective (Kernighan & Lin 1970),
and normalized cut (Shi & Malik 2000), can be formu-
lated as the following trace maximization (Zhaet al. 2002;
Dhillon, Guan, & Kulis 2004; 2005),

max tr(C̃T AC̃). (11)

In (11), typicallyC̃ is a weighted indicator matrix such that

C̃ij =

{
1

|πj |
1
2

if vi ∈ πj

0 otherwise

where|πj | denotesthe number of nodes in thejth partition.
In other words,C̃ satisfies the constraints̃C ∈ Rn×k

+ and
C̃T C̃ = Ik, whereIk is thek × k identity matrix.

We propose the following theorem to show that the var-
ious edge cut objectives are mathematically equivalent to
a special case of the GPLD model. To be consistent with
the weighted indicator matrix used in edge cut objects, in
the following theorem we modify the constraints onC as
C ∈ R+ andCT C = Ik to makeC to be a weighted indi-
cator matrix.
Theorem 6. The GPLD model under Euclidean distance
function andB = rIk for r > 0, i.e.,

min
C∈Rn×k

+ ,

CT C=Ik

||A− C(rIk)CT ||2 (12)

is equivalent to the maximization

max tr(CT AC), (13)

where tr denotes the trace of a matrix.

Proof. Let L denote the objective function in Eq. 12.

L = ||A− rCCT ||2
= tr((A− rCCT )T (A− rCCT ))

= tr(AT A)− 2rtr(CCT A) + r2tr(CCT CCT )

= tr(AT A)− 2rtr(CT AC) + r2k

The above deduction uses the property of trace tr(XY) =
tr(Y X). Since tr(AT A), r and k are constants, the
minimization of L is equivalent to the maximization of
tr(CT AC). The proof is completed.
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Table 2: Summary of the syntheticgraphs
Graph Parameter n k distribution

syn1

2
4

3 3 2.7

3 2.7 2.7

2.7 2.7 3

3
5 300 3 Normal

syn2

2
4

6.9 7 6.3

7 6.3 6.3

6.3 6.3 7

3
5 600 3 Poisson

syn3 R20×20 20000 20 Normal

Theorem6 states that with the partitionrepresentative ma-
trix B restricted to be of the formrIk, the GPLD model un-
der Euclidean distance is reduced to the trace maximization
in (13). Since various edge cut objectives can be formulated
as the trace maximization, Theorem 6 establishes the con-
nection between the GPLD model and the existing edge cut
objective functions.

Based on this connection, edge cut objectives make two
implicit assumptions for a graph’s link distribution. First,
Euclidean distance in Theorem 6 implies normal distribu-
tion assumption for the edge weights in a graph. Second,
since the off-diagonal entries inB represent the mean edge
weights between partitions and the diagonal elements ofB
represent the the mean edge weights within partitions, re-
strictingB to be of the formrIk for r > 0 implies that the
edges between partitions are very sparse (close to0) and the
edge weights within partitions have the same positive ex-
pectationr. However, these two assumptions are not appro-
priate for the graphs whose link distributions deviate from
normal distribution or dense graphs. Therefore, compared
with the edge cut based approaches, the GPBD algorithm
is more flexible to deal with graphs with different statistic
characteristics.

Experimental Results
Although GPBD actually provides a family of algorithms
under various Bregman divergences, due to the space limit,
in this paper we present the experimental evaluation of the
effectiveness of the GPBD algorithm under two most pop-
ular divergences, GPBD under Euclidean Distance (GPBD-
ED) corresponding to normal distribution, and GPBD un-
der Generalized I-divergence (GPBD-GI) corresponding to
Poisson distribution, in comparison with two representative
graph partitioning algorithms, Normalized Cut (NC) (Shi
& Malik 2000; Ng, Jordan, & Weiss 2001) and METIS
(Karypis & Kumar 1998).

We use synthetic data to simulate graphs whose edge
weights are under normal and poisson distributions. The dis-
tribution parameters to generate the graphs are listed in the
second column of Table 2 as matrices. In a parameter matrix
P , Pij denotes the distribution parameter that generates the
edge weights between the nodes in theith partition and the
nodes in thejth partition. Graph syn3 has twenty partitions
of 20000 nodes and about10 million edges. Due to the space
limit, its distribution parameters are omitted here.

The graphs based on the text data have been widely used
to test graph partitioning algorithms (Dinget al. 2001;
Dhillon 2001; Zhaet al. 2001). In this study, we con-

struct real graphs based on various data sets from the 20-
newsgroups (Lang 1995) data, which contains about20, 000
articles from the20 news groups and can be used to generate
data sets of different sizes, balances and difficulty levels. We
pre-process the data by removing stop words and file headers
and selecting the top2000 words by the mutual information.
Each document is represented by a term-frequency vector
using TF-IDF weights and the cosine similarity is adopted
for the edge weight. Specific details of data sets are listed
in Table 3. For example, the third row of Table 3 shows
that three data sets NG5-1, NG5-2 and NG5-3 are generated
by sampling from five newsgroups with size 900, 1200 and
1450, respectively, and withbalance1.5, 2.5, and 4, respec-
tively. Herebalancedenotes the ratio of the largest partition
size to the smallest partition size in a graph. Normalized
Mutual Information (NMI) (Strehl & Ghosh 2002) is used
for performance measure, which is a standard way to mea-
sure the cluster quality. The final performance score is the
average of twenty runs.

Table 4 shows the NMI scores of the four algorithms. For
the synthetic data syn1 and syn3 with normal link distribu-
tion, the GPBD-ED algorithm, which assumes normal distri-
bution for the links, provides the best NMI score. Similarly,
for data syn2 with poisson link distribution, the GPBD-GI
algorithm, which assumes poisson distribution for the links,
provides the best performance.

For real graphs, we observe that GPBD-GI provides best
NMI scores for all the graphs and preforms significantly bet-
ter than NC and METIS in most graphs . This implies that
link distributions of the graphs are closer to Poisson distribu-
tion than normal distribution. How to determine appropriate
link distribution assumption for a given graph is beyond the
scope of this paper. However, the result shows that the ap-
propriate link distribution assumption (appropriate distance
function for GPBD) leads to a significant improvement on
the partitioning quality. For example, for the graph NG2-3,
even NC totally fails and other algorithms perform poorly,
GPBD-IS still provides satisfactory performance. We ob-
serve that all the algorithms perform poorly for NG10. One
possible reason for this is that in NG10 some partitions are
heavily overlapped and very unbalanced. We also observe
that the performance of the GPBD with the appropriate dis-
tribution is more robust to unbalanced graphs. For exam-
ple, from NG2-1 to NG2-3, the performance of GPBD-IS
decreases much less than those of NC and METIS. One pos-
sible reason for METIS’s performance deterioration on un-
balanced graphs is that it restricts partitions to have equal
size.

Conclusion
In this paper, we propose a general model to partition graphs
based on link distribution. This model formulates graph par-
titioning under a certain distribution assumption as approx-
imating the graph affinity matrix under the corresponding
distortion measure. Under this model, we derive a novel
graph partitioning algorithm to approximate a graph affin-
ity matrix under various Bregman divergences, which cor-
respond to a large exponential family of distributions. Our
theoretic analysis and experiments demonstrate the potential
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Table 3: Subsets of NewsgroupDatafor constructing graphs.
Name Newsgroups Included # Documents Balance
NG2-1/2/3 alt.atheism, comp.graphics 330/525/750 1.2/2.5/4
NG3-1/2/3 comp.graphics,rec.sport.hockey,talk.religion.misc 480/675/900 1.2/2.5/4
NG5-1/2/3 comp.os.ms-windows.misc, comp.windows.x,

rec.motorcycles,sci.crypt, sci.space 900/1200/1450 1.5/2.5/4
NG10 comp.graphics,comp.sys.ibm.pc.hardware, rec.autos,

rec.sport.baseball,sci.crypt,sci.med,comp.windows.x,
soc.religion.christian,talk.politics.mideast,talk.religion.misc 5600 7

Table 4: NMI scores of thefive algorithms
Data NC METIS GPBD-ED GPBD-GI
syn1 0.673± 0.081 0.538± 0.016 0.915± 0.017 0.893± 0.072
syn2 0.648± 0.052 0.533± 0.018 0.828± 0.139 0.863± 0.111
syn3 0.801± 0.029 0.799± 0.010 0.933± 0.047 0.811± 0.055
NG2-1 0.482± 0.299 0.759± 0.024 0.678± 0.155 0.824± 0.045
NG2-2 0.047± 0.041 0.400± 0.000 0.283± 0.029 0.579± 0.073
NG2-3 0.042± 0.023 0.278± 0.000 0.194± 0.008 0.356± 0.027
NG3-1 0.806± 0.108 0.810± 0.017 0.718± 0.128 0.852± 0.081
NG3-2 0.185± 0.116 0.501± 0.012 0.371± 0.131 0.727± 0.070
NG3-3 0.048± 0.013 0.546± 0.016 0.235± 0.091 0.631± 0.179
NG5-1 0.598± 0.077 0.616± 0.032 0.550± 0.043 0.662± 0.025
NG5-2 0.5612± 0.030 0.570± 0.020 0.546± 0.032 0.670± 0.022
NG5-3 0.426± 0.060 0.574± 0.018 0.515± 0.033 0.668± 0.035
NG10 0.281± 0.011 0.310± 0.017 0.308± 0.015 0.335± 0.009

andeffectiveness of theproposedmodel and algorithm. We
also show the connections between the traditional edge cut
objectives and the proposed model to provide a unified view
to graph partitioning.
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Abstract
Relational data appear frequently in many ma-
chine learning applications. Relational data con-
sist of the pairwise relations (similarities or dis-
similarities) between each pair of implicit ob-
jects, and are usually stored in relation matri-
ces and typically no other knowledge is avail-
able. Although relational clustering can be for-
mulated as graph partitioning in some applica-
tions, this formulation is not adequate for gen-
eral relational data. In this paper, we propose a
general model for relational clustering based on
symmetric convex coding. The model is applica-
ble to all types of relational data and unifies the
existing graph partitioning formulation. Under
this model, we derive two alternative bound opti-
mization algorithms to solve the symmetric con-
vex coding under two popular distance functions,
Euclidean distance and generalized I-divergence.
Experimental evaluation and theoretical analysis
show the effectiveness and great potential of the
proposed model and algorithms.

1. Introduction

Two types of data are used in unsupervised learning, fea-
ture and relational data. Feature data are in the form of
feature vectors and relational data consist of the pairwise
relations (similarities or dissimilarities) between each pair
of objects, and are usually stored in relation matrices and
typically no other knowledge is available. Although feature
data are the most common type of data, relational data have
become more and more popular in many machine learning

Appearing in Proceedings of the 24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

applications, such as web mining, social network analysis,
bioinformatics, VLSI design, and task scheduling. Further-
more, the relational data are more general in the sense all
the feature data can be transformed into relational data un-
der a certain distance function.

The most popular way to cluster similarity-based relational
data is to formulate it as the graph partitioning problem,
which has been studied for decades. Graph partitioning
seeks to cut a given graph into disjoint subgraphs which
correspond to disjoint clusters based on a certain edge cut
objective. Recently, graph partitioning with an edge cut ob-
jective has been shown to be mathematically equivalent to
an appropriate weighted kernel k-means objective function
(Dhillon et al., 2004; Dhillon et al., 2005). The assump-
tion behind the graph partitioning formulation is that since
the nodes within a cluster are similar to each other, they
form a dense subgraph. However, in general this is not true
for relational data, i.e., the clusters in relational data are not
necessarily dense clusters consisting of strongly-related ob-
jects.

Figure 1 shows the relational data of four clusters,
which are of two different types. In Figure 1, C1 =
{v1, v2, v3, v4} and C2 = {v5, v6, v7, v8} are two tradi-
tional dense clusters within which objects are strongly re-
lated to each other. However, C3 = {v9, v10, v11, v12} and
C4 = {v13, v14, v15, v16} also form two sparse clusters,
within which the objects are not related to each other, but
they are still ”similar” to each other in the sense that they
are related to the same set of other nodes. In Web min-
ing, this type of cluster could be a group of music ”fans”
Web pages which share the same taste on the music and
are linked to the same set of music Web pages but are not
linked to each other (Kumar et al., 1999). Due to the impor-
tance of identifying this type of clusters (communities), it
has been listed as one of the five algorithmic challenges in
Web search engines (Henzinger et al., 2003). Note that the
cluster structure of the relation data in Figure 1 cannot be
correctly identified by graph partitioning approaches, since
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they look for only dense clusters of strongly related objects
by cutting the given graph into subgraphs; similarly, the
pure bi-partite graph models cannot correctly identify this
type of cluster structures. Note that re-defining the rela-
tions between the objects does not solve the problem in this
situation, since there exist both dense and sparse clusters.

If the relational data are dissimilarity-based, to apply graph
partitioning approaches to them, we need extra efforts on
appropriately transforming them into similarity-based data
and ensuring that the transformation does not change the
cluster structures in the data. Hence, it is desirable for
an algorithm to be able to identify the cluster structures
no matter which type of relational data is given. This is
even more desirable in the situation where the background
knowledge about the meaning of the relations is not avail-
able, i.e., we are given only a relation matrix and do not
know if the relations are similarities or dissimilarities.

In this paper, we propose a general model for relational
clustering based on symmetric convex coding of the re-
lation matrix. The proposed model is applicable to the
general relational data consisting of only pairwise relations
typically without other knowledge; it is capable of learning
both dense and sparse clusters at the same time; it unifies
the existing graph partition models to provide a generalized
theoretical foundation for relational clustering. Under this
model, we derive iterative bound optimization algorithms
to solve the symmetric convex coding for two important
distance functions, Euclidean distance and generalized I-
divergence. The algorithms are applicable to general rela-
tional data and at the same time they can be easily adapted
to learn a specific type of cluster structure. For example,
when applied to learning only dense clusters, they provide
new efficient algorithms for graph partitioning. The con-
vergence of the algorithms is theoretically guaranteed. Ex-
perimental evaluation and theoretical analysis show the ef-
fectiveness and great potential of the proposed model and
algorithms.

2. Related Work

Graph partitioning (or clustering) is a popular formulation
of relational clustering, which divides the nodes of a graph
into clusters by finding the best edge cuts of the graph.
Several edge cut objectives, such as the average cut (Chan
et al., 1993), average association (Shi & Malik, 2000), nor-
malized cut (Shi & Malik, 2000), and min-max cut (Ding
et al., 2001), have been proposed. Various spectral algo-
rithms have been developed for these objective functions
(Chan et al., 1993; Shi & Malik, 2000; Ding et al., 2001).
These algorithms use the eigenvectors of a graph affinity
matrix, or a matrix derived from the affinity matrix, to par-
tition the graph.

Multilevel methods have been used extensively for graph
partitioning with the Kernighan-Lin objective, which at-
tempt to minimize the cut in the graph while maintaining
equal-sized clusters (Bui & Jones, 1993; Hendrickson &
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Figure 1. The graph (a) and relation matrix (b) of the relational
data with different types of clusters. In (b), the dark color denotes
1 and the light color denotes 0.

Leland, 1995; Karypis & Kumar, 1998).

Recently, graph partitioning with an edge cut objective
has been shown to be mathematically equivalent to an
appropriate weighted kernel k-means objective function
(Dhillon et al., 2004; Dhillon et al., 2005). Based on this
equivalence, the weighted kernel k-means algorithm has
been proposed for graph partitioning (Dhillon et al., 2004;
Dhillon et al., 2005). Yu et al. (2005) propose the graph-
factorization clustering for the graph partitioning, which
seeks to construct a bipartite graph to approximate a given
graph. Nasraoui et al. (1999) propose the relational fuzzy
maximal density estimator algorithm.

In this paper, our focus is on the homogeneous relational
data, i.e., the objects in the data are of the same type. There
are some efforts in the literature that can be considered
as clustering heterogeneous relational data, i.e., different
types of objects are related to each other. For example, co-
clustering addresses clustering two types of related objects,
such as documents and words, at the same time. Dhillon
et al. (2003) propose a co-clustering algorithm to maximize
the mutual information. A more generalized co-clustering
framework is presented by Banerjee et al. (2004) wherein
any Bregman divergence can be used in the objective func-
tion. Long et al. (2005), Li (2005) and Ding et al. (2006)
all model the co-clustering as an optimization problem in-
volving a triple matrix factorization.

3. Symmetric Convex Coding

In this section, we propose a general model for relational
clustering. Let us first consider the relational data in Fig-
ure 1. An interesting observation is that although the dif-
ferent types of clusters look so different in the graph from
Figure 1(a), they all demonstrate block patterns in the re-
lation matrix of Figure 1(b) (without loss of generality, we
arrange the objects from the same cluster together to make
the block patterns explicit). Motivated by this observation,
we propose the Symmetric Convex Coding (SCC) model
to cluster relational data by learning the block pattern of
a relation matrix. Since in most applications, the relations
are of non-negative values and undirected, relational data
can be represented as non-negative, symmetric matrices.
Therefore, the definition of the SCC is given as follows.

Definition 3.1. Given a symmetric matrix A ∈ R+, a dis-
tance function D and a positive number k, the symmetric
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convex coding is given by the minimization,

min
C∈R

n×k
+

,B∈R
k×k
+

C1=1

D(A,CBCT ). (1)

According to Definition 3.1, the elements of C are between
0 and 1 and the sum of the elements in each row of C equal
to 1. Therefore, SCC seeks to use the convex combination
of the prototype matrix B to approximate the original rela-
tion matrix. The factors from SCC have intuitive interpre-
tations. The factor C is the soft membership matrix such
that Cij denotes the weight that the ith object associates
with the jth cluster. The factor B is the prototype matrix
such that Bii denotes the connectivity within the ith clus-
ter andBij denotes the connectivity between the ith cluster
and the jth cluster.

SCC provides a general model to learn various cluster
structures from relational data. Graph partitioning, which
focuses on learning dense cluster structure, can be formu-
lated as a special case of the SCC model. We propose the
following theorem to show that the various graph partition-
ing objective functions are mathematically equivalent to a
special case of the SCC model. Since most graph parti-
tioning objective functions are based on the hard cluster
membership, in the following theorem we modify the con-
straints on C as C ∈ R+ and CTC = Ik to make C to be
the following cluster indicator matrix,

Cij =

{

1

|πj |
1

2

if vi ∈ πj

0 otherwise

where |πj | denotes the number of nodes in the jth cluster.

Theorem 3.2. The hard version of SCC model under
Euclidean distance function and B = rIk for r > 0, i.e.,

min
C∈R

n×k
+

,B∈R
k×k
+

CT C=Ik

||A− C(rIk)CT ||2 (2)

is equivalent to the maximization

max tr(CTAC), (3)

where tr denots the trace of a matrix.

Proof. Let L denote the objective function in Eq. 2.

L = ||A− rCCT ||2 (4)

= tr((A− rCCT )T (A− rCCT )) (5)

= tr(ATA)− 2rtr(CCTA) + r2tr(CCTCCT )(6)

= tr(ATA)− 2rtr(CTAC) + r2k (7)

The above deduction uses the property of trace tr(XY ) =
tr(Y X). Since tr(ATA), r and k are constants, the
minimization of L is equivalent to the maximization of
tr(CTAC). The proof is completed.

Theorem 3.2 states that with the prototype matrix B re-
stricted to be of the form rIk, SCC under Euclidean dis-
tance is reduced to the trace maximization in (3). Since var-
ious graph partitioning objectives, such as ratio association
(Shi & Malik, 2000), normalized cut (Shi & Malik, 2000),
ratio cut (Chan et al., 1993), and Kernighan-Lin objective
(Kernighan & Lin, 1970), can be formulated as the trace
maximization (Dhillon et al., 2004; Dhillon et al., 2005),
Theorem 3.2 establishes the connection between the SCC
model and the existing graph partitioning objective func-
tions. Based on this connection, it is clear that the existing
graph partitioning models make an implicit assumption for
the cluster structure of the relational data, i.e., the clusters
are not related to each other (the off-diagonal elements of
B are zeroes) and the nodes within clusters are related to
each other in the same way (the diagonal elements ofB are
r). This assumption is consistent with the intuition about
the graph partitioning, which seeks to ”cut” the graph into
k separate subgraphs corresponding to the strongly-related
clusters.

With Theorem 3.2 we may put other types of structural con-
straints on B to derive new graph partitioning models. For
example, we fix B as a general diagonal matrix instead of
rIk, i.e, the model fixes the off-diagonal elements of B
as zero and learns the diagonal elements of B. This is a
more flexible graph partitioning model, since it allows the
connectivity within different clusters to be different. More
generally, we can use B to restrict the model to learn other
types of the cluster structures. For example, by fixing diag-
onal elements of B as zeros, the model focuses on learning
only spare clusters (corresponding to bi-partite or k-partite
subgraphs), which are important for Web community learn-
ing (Kumar et al., 1999; Henzinger et al., 2003). In sum-
mary, the prototype matrix B not only provides the intu-
ition for the cluster structure of the data, but also provides
a simple way to adapt the model to learn specific types of
cluster structures.

4. Algorithm Derivation

In this section, we derive efficient algorithms for the SCC
model under two popular distance functions, Euclidean dis-
tance and generalized I-divergence.

4.1. Algorithm for SCC under Euclidean Distance

We derive an alternative optimization algorithm for SCC
under Euclidean distance, i.e., the algorithm alternatively
updates B and C until convergence.

First we fix B to update C. To deal with the constraint
C1 = 1 efficiently, we transform it to a ”soft” constraint
by adding a penalty term, α||C1 − 1||2, to the objective
function, where α is a positive constant. Therefore, we
obtain the following optimization.

min
C∈R

n×k
+

||A− CBCT ||2 + α||C1− 1||2. (8)
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The objective function in (8) is quartic with respect to C.
We derive an efficient updating rule for C based on the
bound optimization procedure (Salakhutdinov & Roweis,
2003; D.D.Lee & H.S.Seung, 1999). The basic idea is
to construct an auxiliary function which is a convex upper
bound for the original objective function based on the solu-
tion obtained from the previous iteration. Then, a new solu-
tion to the current iteration is obtained by minimizing this
upper bound. The definition of the auxiliary function and a
useful lemma (D.D.Lee & H.S.Seung, 1999) are quoted as
follows.

Definition 4.1. G(S, St) is an auxiliary function for F (S)
if G(S, St) ≥ F (S) and G(S, S) = F (S).
Lemma 4.2. If G is an auxiliary function, then F
is non-increasing under the updating rule St+1 =
arg min

S
G(S, St).

We propose an auxiliary function for C in the following
theorem.
Lemma 4.3.

G(C, C̃) =
�

ij

(Aij +
α

n
− 2
�

gh

(AijC̃igBghC̃jh(1 + 2 log Cjh

−2 log C̃jh) +
α

nk
C̃jh(1 + log Cjh − log C̃jh)) +

�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C4

jh

C̃4

jh

+

α

2nk
[C̃1]jC̃jh(

C4

jh

C̃4

jh

+ 1)))

is an auxiliary function for

F (C) = ||A− CBCT ||2 + α||C1− 1||2. (9)

Proof. For convenience, we let β = α
nk .

F (C) =
�

ij

((Aij −
�

gh

CigBghCjh)
2

+ β
�

gh

(Cjh − 1)
2
)

≤
�

ij

(
�

gh

C̃igBghC̃jh

[C̃BC̃T ]ij

(Aij − [C̃BC̃T ]ij

C̃igBghC̃jh

CigBghCjh)
2

+β
�

gh

C̃jh

[C̃1]j
(
[C̃1]j

C̃jh

Cjh − 1)
2
)

=
�

ij

(Aij − 2
�

gh

AijCigBghCjh +

�

gh

[C̃BC̃T ]ij

C̃igBghC̃jh

C
2

igB
2

ghC
2

jh + β
�

gh

[C̃1]j

C̃jh

C
2

jh

−2β
�

gh

Cjh + kβ)

=
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ij

(Aij + kβ − 2
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gh

(AijC̃igBghC̃jh
CigCjh

C̃igC̃jh

+

βC̃jh
Cjh

C̃jh

) +
�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C2

igC2

jh

C̃2

igC̃2

jh

+β[C̃1]jC̃jh
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jh

C̃2

jh
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≤
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ij

(Aij + kβ − 2
�

gh

(AijC̃igBghC̃jh(1 + log Cig

+ log Cjh − log C̃ig − log C̃jh) + βC̃jh(1 + log Cjh −

log C̃jh)) +
�

gh

(
1

2
[C̃BC̃

T
]ijC̃igBghC̃jh(

C4

ig

C̃4

ig

+
C4

jh

C̃4

jh
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+
1

2
β[C̃1]jC̃jh(

C4

jh

C̃4
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=
�

ij

(Aij + kβ − 2
�

gh

(AijC̃igBghC̃jh(1 + 2 log Cjh

−2 log C̃jh) + βC̃jh(1 + log Cjh − log C̃jh)) +

�

gh

([C̃BC̃
T

]ijC̃igBghC̃jh

C4

jh

C̃4

jh

+

1

2
β[C̃1]jC̃jh(

C4

jh

C̃4

jh

+ 1)))

During the above deduction, we uses Jensen’s inequality,
convexity of the quadratic function and inequalities, x2 +
y2 ≥ 2xy and x ≥ 1 + log x.

The following theorem provides the updating rule for C.

Theorem 4.4. The objective function F (C) in Eq.(9) is
nonincreasing under the updating rule,

C = C̃ � (
AC̃B + α

2

C̃BC̃T C̃B + α
2 C̃E

)
1

4 (10)

where C̃ denotes the solution from the previous iteration,E
denotes a k × k matrix of 1’s, � denotes entry-wise prod-
uct, and the division between two matrices is entry-wise
division.

Proof. Based on Lemma 4.3, take the derivative of
G(C, C̃) w.r.t. Cjh to obtain

∂G(C, C̃)

∂Cjh
=

�
i

�
gh

(−4AijC̃igBgh
C̃jh

Cjh
− 2

α

nk

C̃jh

Cjh

+4[C̃BC̃T
]ijC̃igBgh

C3

jh

C̃3

jh

+2
α

nk
[C̃1]j

C3

jh

C̃3

jh

).

Solve ∂G(C,C̃)
∂Cjh

= 0 to obtain

Cjh = C̃jh(

�
i

�
gh AijC̃igBgh +

α
2�

i

�
gh[C̃BC̃T ]ijC̃igBgh +

α
2
[C̃1]j

)
1

4

Formulate the above equation into the matrix form

C = C̃ � (
AC̃B + α

2

C̃BC̃T C̃B + α
2 C̃E

)
1

4

By Lemma 4.2, the proof is completed.

Similarly, we present the following theorems to derive the
updating rule for B.
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Algorithm 1 SCC-ED algorithm
Input: A graph affinity matrix A and a positive integer k.
Output: A community membership matrix C and a com-
munity structure matrix B.
Method:

1: Initialize B and C.
2: repeat
3:

B = B � CTAC

CTCBCTC
.

4:

C = C � (
ACB + α

2

CBCTCB + α
2CE

)
1

4

5: until convergence

Lemma 4.5.

G(B, B̃) =
∑

ij

(Aij − 2
∑

gh

AijCigBghCjh +

∑

gh

[CB̃C]ijCigCjh

B2
gh

B̃gh

)

is an auxiliary function for

F (B) = ||A− CBCT ||2. (11)

Theorem 4.6. The objective function F (B) in Eq.(11) is
nonincreasing under the updating rule

B = B̃ � CTAC

CTCB̃CTC
. (12)

Following the way to prove Lemma 4.3 and Theorem 4.4, it
is not difficult to prove the above theorems. We omit details
here.

We call the algorithm as the SCC-ED algorithm, which is
summarized in Algorithm 1. The implementation of SCC-
ED is simple and it is easy to take advantage of the distrib-
uted computation for a very large data set. The complexity
of the algorithm is O(tn2k) for t iterations and it can be
further reduced for sparse data. The convergence of the
SCC-ED algorithm is guaranteed by Theorems 4.4 and 4.6.

If the task is to learn the dense clusters from similarity-
based relational data as the graph partitioning does, SCC-
ED can achieve this task simply by fixing B as the identity
matrix and updating only C by (10) until convergence. In
other words, updating rule (10) itself provides a new and ef-
ficient graph partitioning algorithm, which is computation-
ally more efficient than the popular spectral graph partition-
ing approaches which involve expensive eigenvector com-
putation (typically O(n3)) and the extra post-processing
(Yu & Shi, 2003) on eigenvectors to obtain the clustering.

Compared with the multi-level approaches such as METIS
(Karypis & Kumar, 1998), this new algorithm does not re-
strict clusters to have an equal size.

Another advantage of the SCC-ED algorithm is that it is
very easy for the algorithm to incorporate constraints on B
to learn a specific type of cluster structures. For example,
if the task is to learn the sparse clusters by constraining
the diagonal elements of B to be zero, we can enforce this
constraint simply by initializing the diagonal elements of
B as zeros. Then, the algorithm automatically only updates
the off-diagonal elements of B and the diagonal elements
of B are ’locked’ to zeros.

Yet another interesting observation about SCC-ED is that
if we set α = 0 to change the updating rule for C into the
following,

C = C̃ � (
AC̃B

C̃BC̃T C̃B
)

1

4 , (13)

the algorithm actually provides the symmetric conic cod-
ing. This has been touched in the literature as the symmet-
ric case of non-negative factorizaion (Catral et al., 2004;
Ding et al., 2005; Long et al., 2005). Therefore, SCC-ED
under α = 0 also provides a theoretically sound solution to
the symmetric nonnegative matrix factorization.

4.2. Algorithm for SCC under Generalized
I-divergence

Under the generalized I-divergence, the SCC objective
function is given as follows,

D(A||CBCT ) =
∑

ij

(Aij log
Aij

[CBCT ]ij

−Aij + [CBCT ]ij) (14)

Similarly, we derive an alternative bound optimization al-
gorithm for this objective function. First, we derive the
updating rule for C and our task is the following optimiza-
tion.

min
C∈R

n×k
+

D(A||CBCT ) + α||C1− 1||2. (15)

Then, the following theorems provide the updating rule for
C.
Lemma 4.7.

G(C, C̃) =

�
ij

(Aij log Aij − Aij +
α

n

+Aij

�
gh

(
C̃igBghC̃jh

[C̃BC̃T ]ij

log
C̃igC̃jh

[C̃BC̃T ]ij

)

+

�
gh

((C̃igBghC̃jh +
α

nk
[C̃1]jC̃jh)

C2

jh

C̃2

jh

)

−2

�
gh

((Aij
C̃igBghC̃jh

[C̃BC̃T ]ij

+
α

nk
C̃jh) log Cjh)

24



Relational Clustering by Symmetric Convex Coding

−2

�
gh

α

nk
C̃jh(1 − log C̃jh))

is an auxiliary function for

F (C) = D(A||CBCT ) + α||C1− 1||2. (16)

Theorem 4.8. The objective function F (C) in Eq.(16) is
nonincreasing under the updating rule,

Cjh = C̃jh(

∑

i
Aij [C̃B]ih

[C̃BC̃T ]ij
+ α

∑

i[C̃B]ih + α[C̃1]j
)

1

2 (17)

where C̃ denotes the solution from the previous iteration.

The following theorems provide the updating rule for B.

Lemma 4.9.

G(B, B̃) =

�
ij

(Aij log Aij − Aij +

�
gh

CigBghCjh

−Aij

�
gh

(
CigB̃ghCjh

[CB̃CT ]ij

(log CigBghCjh

− log
CigB̃ghCjh

[CB̃CT ]ij

)))

is an auxiliary function for

F (B) = D(A||CBCT ). (18)

Theorem 4.10. The objective function F (B) in Eq.(18) is
nonincreasing under the updating rule,

Bgh = B̃gh

∑

ij
AijCigCjh

[CB̃CT ]ij
∑

ij CigCjh
(19)

where B̃ denotes the solution from the previous iteration.

Due to the space limit, we omit the proofs for the above
theorems. We call the algorithm based on updating rule
(17) and (19) as SCC-GI, which provides another new rela-
tional clustering algorithm. Similarly, when applied to the
similarity-based relational data of dense clusters, SCC-GI
provides another new and efficient graph partitioning algo-
rithm.

5. Experimental Results

This section provides empirical evidence to show the ef-
fectiveness of the SCC model and algorithms in compari-
son with two representative graph partitioning algorithms,
a spectral approach, Normalized Cut (NC) (Shi & Malik,
2000), and a multilevel algorithm, METIS (Karypis & Ku-
mar, 1998).

Table 1. Summary of the synthetic relational data
Graph Parameter n k

syn1

�
0.5 0 0
0 0.5 0
0 0 0.5

�
900 3

syn2 1 − syn1 900 3

syn3

�
0 0.1 0.1

0.1 0 0.2
0.1 0.2 0

�
900 3

syn4 [0, 1]
10×10 5000 10

5.1. Data Sets and Parameter Setting

The data sets used in the experiments include synthetic data
sets with various cluster structures and real data sets based
on various text data from the 20-newsgroups (Lang, 1995),
WebACE and TREC (Karypis, 2002).

First, we use synthetic binary relational data to simulate re-
lational data with different types of clusters such as dense
clusters, sparse clusters and mixed clusters. All the syn-
thetic relational data are generated based on Bernoulli
distribution. The distribution parameters to generate the
graphs are listed in the second column of Table 1 as matri-
ces (true prototype matrices for the data). In a parameter
matrix P , Pij denotes the probability that the nodes in the
ith cluster are connected to the nodes in the jth cluster. For
example, in data syn3, the nodes in cluster 2 are connected
to the nodes in cluster 3 with probability 0.2 and the nodes
within a cluster are connected to each other with probability
0. Syn2 is generated by using 1 minus syn1. Hence, syn1
and syn2 can be viewed as a pair of similarity/dissimilarity
data. Data syn4 has ten clusters mixing with dense clusters
and sparse clusters. Due to the space limit, its distribution
parameters are omitted here. Totally syn4 has 5000 nodes
and about 2.1 million edges.

The graphs based on the text data have been widely used
to test graph partitioning algorithms (Ding et al., 2001;
Dhillon, 2001; Zha et al., 2001). Note that there also ex-
ist feature-based algorithms to directly cluster documents
based on word features. However, in this study our focus
is clustering based on relations instead of features. Hence
graph clustering algorithms are used as comparisons. We
use various data sets from the 20-newsgroups (Lang, 1995),
WebACE and TREC (Karypis, 2002), which cover data sets
of different sizes, different balances and different levels of
difficulties. We construct relational data for each text data
set such that objects (documents) are related to each other
with cosine similarities between the term-frequency vec-
tors. A summary of all the data sets to construct relational
data used in this paper is shown in Table 2, in which n
denotes the number of objects in the relational data, k de-
notes the number of true clusters, and balance denotes the
size ratio of the smallest clusters to the largest clusters.

For the number of clusters k, we simply use the number of
the true clusters. Note that how to choose the optimal num-
ber of clusters is a nontrivial model selection problem and
beyond the scope of this paper. For performance measure,
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Table 2. Summary of relational data based on text data sets.
Name n k Balance Source
tr11 414 9 0.046 TREC
tr23 204 6 0.066 TREC

NG17-19 1600 3 0.5 20-newsgroups
NG1-20 14000 20 1.0 20-newsgroups

k1b 2340 6 0.043 WebACE
hitech 2301 6 0.192 TREC

MEDLINE/
classic3 3893 3 0.708 CISI/CRANFILD

we elect to use the Normalized Mutual Information (NMI)
(Strehl & Ghosh, 2002) between the resulting cluster labels
and the true cluster labels, which is a standard way to mea-
sure the cluster quality. The final performance score is the
average of ten runs.

5.2. Results and Discussion

Table 3 shows the NMI scores of the four algorithms on
synthetic and real relational data. Each NMI score is the
average of ten test runs and the standard deviation is also
reported. We observe that although there is no single win-
ner on all the data, for most data SCC algorithms perform
better than or close to NC and METIS. Especially, SCC-GI
provides the best performance on eight of the eleven data
sets.

For the synthetic data syn1, almost all the algorithms pro-
vide perfect NMI score, since the data are generated with
very clear dense cluster structures, which can be seen from
the parameter matrix in Table 1. For data syn2, the dissim-
ilarity version of syn1, we use exactly the same set of true
cluster labels as that of syn1 to measure the cluster quality;
the SCC algorithms still provide almost perfect NMI score;
however, the METIS totally fails on syn2, since in syn2 the
clusters have the form of sparse clusters, and based on the
edge cut objective, METIS looks for only dense clusters.
An interesting observation is that the NC algorithm does
not totally fail on syn2 and in fact it provides a satisfac-
tory NMI score. This is due to that although the original
objective of the NC algorithm focuses on dense clusters
(its objective function can be formulated as the trace max-
imization in Eq. (3)), after relaxing C to an arbitrary or-
thonormal matrix, what NC actually does is to embed clus-
ter structures into the eigen-space and to discover them by
post-processing the eigenvectors. Besides the dense cluster
structures, sparse cluster structures could also have a good
embedding in the eigen-space under a certain condition.

In data syn3, the relations within clusters are sparser than
the relations between clusters, i.e., it also has sparse clus-
ters, but the structure is more subtle than syn2. We ob-
serve that NC does not provide a satisfactory performance
and METIS totally fails; in the mean time, SCC algorithms
identify the cluster structure in syn3 very well. Data syn4 is
a large relational data set of ten clusters consisting of four
dense clusters and six sparse clusters; we observe that the
SCC algorithms perform significantly better than NC and

METIS on it, since they can identify both dense clusters
and sparse clusters at the same time.

For the real data based on the text data sets, our task is
to find dense clusters, which is consistent with the objec-
tives of graph partitioning approaches. Overall, the SCC
algorithms perform better than NC and METIS on the real
data sets. Especially, SCC-ED provides the best perfor-
mance in most data sets. The possible reasons for this are
discussed as follows. First, the SCC model makes use of
any possible block pattern in the relation matrices; on the
other hand, the edge-cut based approaches focus on diago-
nal block patterns. Hence, the SCC model is more robust to
heavily overlapping cluster structures. For example, for the
difficult NG17-19 dataset, SCC algorithms do not totally
fail as NC and METIS do. Second, since the edge weights
from different graphs may have very different probabilistic
distributions, popular Euclidean distance function, which
corresponds to normal distribution assumption, are not al-
ways appropriate. By Theorem 3.2, edge-cut based algo-
rithms are based on Euclidean distance. On the other hand,
SCC-ED is based on generalized I-divergence correspond-
ing to Poisson distribution assumption, which is more ap-
propriate for graphs based on text data. Note that how to
choose distance functions for specific graphs is non-trivial
and beyond the scope of this paper. Third, unlike METIS,
the SCC algorithms do not restrict clusters to have an equal
size and hence they are more robust to unbalanced clusters.

In the experiments, we observe that SCC algorithms per-
forms stably and rarely provides unreasonable solution,
though like other algorithms SCC algorithms provide local
optima to the NP-hard clustering problem. In the experi-
ments, we also observe that the order of the actual running
time for the algorithms is consistent with theoretical analy-
sis in Section 4.1, i.e., METIS<SCC<NC. For example,
in a test run on NG1-20, METIS, SCC-ED, SCC-GI and
NC take 8.96, 11.4, 12.1 and 35.8 seconds, respectively.
METIS is the best, since it is quasi-linear.

We also run the SCC-ED algorithm on the actor/actress
graph based on IMDB movie data set for a case study of
social network analysis. We formulate a graph of 20000
nodes, in which each node represents an actors/actresses
and the edges denote collaboration between them. The
number of the cluster is set to be 200. Although there is
no ground truth for the clusters, we observe that the re-
sults consist of a large number of interesting and meaning-
ful clusters, such as clusters of actors with a similar style
and tight clusters of the actors from a movie or a movie ser-
ial. For example, Table 4 shows Community 121 consisting
of 21 actors/actresses, which contains the actors/actresses
in movies series ”The Lord of Rings”.

6. Conclusions

In this paper, we propose a general model for relational
clustering based on symmetric convex coding of the rela-
tion matrix. The proposed model is applicable to the gen-
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Table 3. NMI comparisons of NC, METIS, SCC-ED and SCC-GI algorithms
Data NC METIS SCC-ED SCC-GI
syn1 0.9652 ± 0.031 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

syn2 0.8062 ± 0.52 0.000 ± 0.00 0.9038 ± 0.045 0.9753 ± 0.011

syn3 0.636 ± 0.152 0.115 ± 0.001 0.915 ± 0.145 1.000 ± 0.000

syn4 0.611 ± 0.032 0.638 ± 0.001 0.711 ± 0.043 0.788 ± 0.041

tr11 0.629 ± 0.039 0.557 ± 0.001 0.6391 ± 0.033 0.661 ± 0.019

tr23 0.276 ± 0.023 0.138 ± 0.004 0.335 ± 0.043 0.312 ± 0.099

NG17-19 0.002 ± 0.002 0.091 ± 0.004 0.1752 ± 0.156 0.225 ± 0.045

NG1-20 0.510 ± 0.004 0.526 ± 0.001 0.5041 ± 0.156 0.519 ± 0.010

k1b 0.546 ± 0.021 0.243 ± 0.000 0.537 ± 0.023 0.591 ± 0.022

hitech 0.302 ± 0.005 0.322 ± 0.001 0.319 ± 0.012 0.319 ± 0.018

classic3 0.621 ± 0.029 0.358 ± 0.000 0.642 ± 0.043 0.822 ± 0.059

Table 4. The members of cluster 121 in the actor graph
Cluster 121

Viggo Mortensen, Sean Bean, Miranda Otto,
Ian Holm, Brad Dourif, Cate Blanchett,

Ian McKellen ,Liv Tyler , David Wenham ,
Christopher Lee, John Rhys-Davies , Elijah Wood ,

Bernard Hill, Sean Astin, Dominic Monaghan,
Andy Serkis, Karl Urban , Orlando Bloom ,

Billy Boyd ,John Noble, Sala Baker

eral relational data with various types of clusters and unifies
the existing graph partitioning models. We derive iterative
bound optimization algorithms to solve the symmetric con-
vex coding for two important distance functions, Euclidean
distance and generalized I-divergence. The algorithms are
applicable to general relational data and at the same time
they can be easily adapted to learn specific types of cluster
structures. The convergence of the algorithms is theoreti-
cally guaranteed. Experimental evaluation shows the effec-
tiveness and the great potential of the proposed model and
algorithms.
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ABSTRACT
Relational clustering has attracted more and more attention
due to its phenomenal impact in various important appli-
cations which involve multi-type interrelated data objects,
such as Web mining , search marketing, bioinformatics, cita-
tion analysis, and epidemiology. In this paper, we propose
a probabilistic model for relational clustering, which also
provides a principal framework to unify various important
clustering tasks including traditional attributes-based clus-
tering, semi-supervised clustering, co-clustering and graph
clustering. The proposed model seeks to identify cluster
structures for each type of data objects and interaction pat-
terns between different types of objects. Under this model,
we propose parametric hard and soft relational clustering
algorithms under a large number of exponential family dis-
tributions. The algorithms are applicable to relational data
of various structures and at the same time unifies a number
of stat-of-the-art clustering algorithms: co-clustering algo-
rithms, the k-partite graph clustering, and semi-supervised
clustering based on hidden Markov random fields.

Categories and Subject Descriptions: E.4 [Coding
and Information Theory]:Data compaction and compres-
sion; H.3.3[Information search and Retrieval]:Clustering;
I.5.3[Pattern Recognition]:Clustering.

General Terms: Algorithms.

Keywords: Clustering, Relational data, Relational clus-
tering, Semi-supervised clustering, EM-algorithm, Bregman
divergences, Exponential families.

1. INTRODUCTION
Most clustering approaches in the literature focus on ”flat”

data in which each data object is represented as a fixed-
length attribute vector [38]. However, many real-world data
sets are much richer in structure, involving objects of multi-
ple types that are related to each other, such as documents
and words in a text corpus, Web pages, search queries and
Web users in a Web search system, and shops, customers,
suppliers, shareholders and advertisement media in a mar-
keting system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

In general, relational data contain three types of infor-
mation, attributes for individual objects, homogeneous re-
lations between objects of the same type, heterogeneous re-
lations between objects of different types. For example, for
a scientific publication relational data set of papers and au-
thors, the personal information such as affiliation for authors
are attributes; the citation relations among papers are ho-
mogeneous relations; the authorship relations between pa-
pers and authors are heterogeneous relations. Such data
violate the classic IID assumption in machine learning and
statistics and present huge challenges to traditional cluster-
ing approaches. An intuitive solution is that we transform
relational data into flat data and then cluster each type of
objects independently. However, this may not work well due
to the following reasons.

First, the transformation causes the loss of relation and
structure information [14]. Second, traditional clustering
approaches are unable to tackle influence propagation in
clustering relational data, i.e., the hidden patterns of differ-
ent types of objects could affect each other both directly and
indirectly (pass along relation chains). Third, in some data
mining applications, users are not only interested in the hid-
den structure for each type of objects, but also interaction
patterns involving multi-types of objects. For example, in
document clustering, in addition to document clusters and
word clusters, the relationship between document clusters
and word clusters is also useful information. It is difficult to
discover such interaction patterns by clustering each type of
objects individually.

Moreover, a number of important clustering problems,
which have been of intensive interest in the literature, can be
viewed as special cases of relational clustering. For example,
graph clustering (partitioning) [7, 42, 13, 6, 20, 28] can be
viewed as clustering on singly-type relational data consisting
of only homogeneous relations (represented as a graph affin-
ity matrix); co-clustering [12, 2] which arises in important
applications such as document clustering and micro-array
data clustering, can be formulated as clustering on bi-type
relational data consisting of only heterogeneous relations.
Recently, semi-supervised clustering [46, 4] has attracted
significant attention, which is a special type of clustering us-
ing both labeled and unlabeled data. In section 5, we show
that semi-supervised clustering can be formulated as clus-
tering on singly-type relational data consisting of attributes
and homogeneous relations.

Therefore, relational data present not only huge challenges
to traditional unsupervised clustering approaches, but also
great need for theoretical unification of various clustering
tasks. In this paper, we propose a probabilistic model for
relational clustering, which also provides a principal frame-
work to unify various important clustering tasks includ-
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ing traditional attributes-based clustering, semi-supervised
clustering, co-clustering and graph clustering. The pro-
posed model seeks to identify cluster structures for each
type of data objects and interaction patterns between dif-
ferent types of objects. It is applicable to relational data
of various structures. Under this model, we propose para-
metric hard and soft relational clustering algorithms under
a large number of exponential family distributions. The
algorithms are applicable to various relational data from
various applications and at the same time unify a number
of stat-of-the-art clustering algorithms: co-clustering algo-
rithms, the k-partite graph clustering, Bregman k-means,
and semi-supervised clustering based on hidden Markov ran-
dom fields.

2. RELATED WORK
Clustering on a special case of relational data, bi-type rela-

tional data consisting of only heterogeneous relations, such
as the word-document data, is called co-clustering or bi-
clustering. Several previous efforts related to co-clustering
are model based [22, 23]. Spectral graph partitioning has
also been applied to bi-type relational data [11, 25]. These
algorithms formulate the data matrix as a bipartite graph
and seek to find the optimal normalized cut for the graph.
Due to the nature of a bipartite graph, these algorithms
have the restriction that the clusters from different types
of objects must have one-to-one associations. Information-
theory based co-clustering has also attracted attention in
the literature. [12] proposes a co-clustering algorithm to
maximize the mutual information between the clustered ran-
dom variables subject to the constraints on the number of
row and column clusters. A more generalized co-clustering
framework is presented by [2] wherein any Bregman diver-
gence can be used in the objective function. Recently, co-
clustering has been addressed based on matrix factorization.
[35] proposes an EM-like algorithm based on multiplicative
updating rules.

Graph clustering (partitioning) clusters homogeneous data
objects based on pairwise similarities, which can be viewed
as homogeneous relations. Graph partitioning has been stud-
ied for decades and a number of different approaches, such
as spectral approaches [7, 42, 13] and multilevel approaches
[6, 20, 28], have been proposed. Some efforts [17, 43, 21, 21,
1] based on stochastic block modeling also focus on homo-
geneous relations.

Compared with co-clustering and homogeneous-relation-
based clustering, clustering on general relational data, which
may consist of more than two types of data objects with
various structures, has not been well studied in the liter-
ature. Several noticeable efforts are discussed as follows.
[45, 19] extend the the probabilistic relational model to the
clustering scenario by introducing latent variables into the
model; these models focus on using attribute information for
clustering. [18] formulates star-structured relational data
as a star-structured m-partite graph and develops an al-
gorithm based on semi-definite programming to partition
the graph. [34] formulates multi-type relational data as K-
partite graphs and proposes a family of algorithms to iden-
tify the hidden structures of a k-partite graph by construct-
ing a relation summary network to approximate the original
k-partite graph under a broad range of distortion measures.
The above graph-based algorithms do not consider attribute
information.

Some efforts on relational clustering are based on induc-
tive logic programming [37, 24, 31]. Base on the idea of
mutual reinforcement clustering, [51] proposes a framework
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Figure 1: Examples of the structures of relational
data.

for clustering heterogeneous Web objects and [47] presents
an approach to improve the cluster quality of interrelated
data objects through an iterative reinforcement clustering
process. There are no sound objective function and theoret-
ical proof on the effectiveness and correctness (convergence)
of the mutual reinforcement clustering. Some efforts [26, 50,
49, 5] in the literature focus on how to measure the similar-
ities or choosing cross-relational attributes.

To summarize, the research on relational data clustering
has attracted substantial attention, especially in the special
cases of relational data. However, there is still limited and
preliminary work on general relational data clustering.

3. MODEL FORMULATION
With different compositions of three types of information,

attributes, homogeneous relations and heterogeneous rela-
tions, relational data could have very different structures.
Figure 1 shows three examples of the structures of relational
data. Figure 1(a) refers to a simple bi-type of relational data
with only heterogeneous relations such as word-document
data. Figure 1(b) represents a bi-type data with all types
of information, such as actor-movie data, in which actors
(type 1) have attributes such as gender; actors are related
to each other by collaboration in movies (homogeneous rela-
tions); actors are related to movies (type 2) by taking roles in
movies (heterogeneous relations). Figure 1(c) represents the
data consisting of companies, customers, suppliers, share-
holders and advertisement media, in which customers (type
5) have attributes.

In this paper, we represent a relational data set as a set
of matrices. Assume that a relational data set has m dif-
ferent types of data objects, X (1) = {x(1)

i }n1
i=1, . . . ,X (m) =

{x(m)
i }nm

i=1, where nj denotes the number of objects of the

jth type and x
(j)
p denotes the name of the pth object of the

jth type. We represent the observations of the relational
data as three sets of matrices, attribute matrices {F(j) ∈
Rdj×nj}m

j=1, where dj denotes the dimension of attributes

for the jth type objects and F
(j)
·p denotes the attribute vec-

tor for object x
(j)
p ; homogeneous relation matrices {S(j) ∈

Rnj×nj}m
j=1, where S

(j)
pq denotes the relation between x

(j)
p

and x
(j)
q ; heterogeneous relation matrices {R(ij) ∈ Rni×nj}m

i,j=1,

where R
(ij)
pq denotes the relation between x

(i)
p and x

(j)
q . The

above representation is a general formulation. In real ap-
plications, not every type of objects has attributes, homo-
geneous relations and heterogeneous relations. For exam-
ple, the relational data set in Figure 1(a) is represented by

only one heterogeneous matrix R(12), and the one in Figure
1(b) is represented by three matrices, F(1), S(1) and R(12).
Moreover, for a specific clustering task, we may not use all
available attributes and relations after feature or relation
selection pre-processing.

Mixed membership models, which assume that each ob-
ject has mixed membership denoting its association with
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classes, have been widely used in the applications involving
soft classification [16], such as matching words and pictures
[39], race genetic structures [39, 48], and classifying scientific
publications [15].

In this paper, we propose a relational mixed membership
model to cluster relational data (we refer to the model as
mixed membership relational clustering or MMRC through-
out the rest of the paper).

Assume that each type of objects X (j) has kj latent classes.
We represent the membership vectors for all the objects in
X (j) as a membership matrix Λ(j) ∈ [0, 1]kj×nj such that the

sum of elements of each column Λ
(j)
·p is 1 and Λ

(j)
·p denotes

the membership vector for object x
(j)
p , i.e., Λ

(j)
gp denotes the

probability that object x
(j)
p associates with the gth latent

class. We also write the parameters of distributions to gen-
erate attributes, homogeneous relations and heterogeneous
relations in matrix forms. Let Θ(j) ∈ Rdj×kj denote the
distribution parameter matrix for generating attributes F(j)

such that Θ
(j)
·g denotes the parameter vector associated with

the gth latent class. Similarly, Γ(j) ∈ Rkj×kj denotes the pa-
rameter matrix for generating homogeneous relations S(j);
Υ(ij) ∈ Rki×kj denotes the parameter matrix for generating
heterogeneous relations R(ij). In summary, the parameters
of MMRC model are

Ω = {{Λ(j)}m
j=1, {Θ(j)}m

j=1, {Γ(j)}m
j=1, {Υ(ij)}m

i,j=1}.
In general, the meanings of the parameters, Θ, Λ, and Υ, de-
pend on the specific distribution assumptions. However, in
Section 4.1, we show that for a large number of exponential
family distributions, these parameters can be formulated as
expectations with intuitive interpretations.

Next, we introduce the latent variables into the model.
For each object xj

p, a latent cluster indicator vector is gen-

erated based on its membership parameter Λ
(j)
·p , which is

denoted as C
(j)
·p , i.e., C(j) ∈ {0, 1}kj×nj is a latent indicator

matrix for all the jth type objects in X (j).
Finally, we present the generative process of observations,

{F(j)}m
j=1, {S(j)}m

j=1, and {R(ij)}m
i,j=1 as follows:

1. For each object x
(j)
p

• Sample C
(j)
·p ∼ Multinomial(Λ

(j)
·p , 1).

2. For each object x
(j)
p

• Sample F
(j)
·p ∼ Pr(F

(j)
·p |Θ(j)C

(j)
·p ).

3. For each pair of objects x
(j)
p and x

(j)
q

• Sample S
(j)
pq ∼ Pr(S

(j)
pq |(C(j)

·p )T Γ(j)C
(j)
·q ).

4. For each pair of objects x
(i)
p and x

(j)
q

• Sample R
(ij)
pq ∼ Pr(R

(ij)
pq |(C(i)

·p )T Υ(ij)C
(j)
·q ).

In the above generative process, a latent indicator vector for
each object is generated based on multinomial distribution
with the membership vector as parameters. Observations
are generated independently conditioning on latent indica-
tor variables. The parameters of condition distributions are
formulated as products of the parameter matrices and latent

indicators, i.e., Pr(F
(j)
·p |C(j)

·p , Θ(j)) = Pr(F
(j)
·p |Θ(j)C

(j)
·p ),

Pr(S
(j)
pq |C(j)

·p ,C
(j)
·q , Γ(j)) = Pr(S

(j)
pq |(C(j)

·p )T Γ(j)C
(j)
·q ), and

Pr(R
(ij)
pq |C(i)

·p ,C
(j)
·q , Υ(ij)) = Pr(R

(ij)
pq |(C(i)

·p )T Υ(ij)C
(j)
·q ). Un-

der this formulation, an observation is sampled from the

distributions of its associated latent classes. For example,

if C
(i)
·p indicates that x

(i)
p is with the gth latent class and

C
(j)
·q indicates that x

(j)
q is with the hth latent class, then

(C
(i)
·p )T Υ(ij)C

(j)
·q = Υ

(ij)
gh . Hence, we have Pr(R

(ij)
pq |Υ(ij)

gh )

implying that the relation between x
(i)
p and x

(j)
q is sampled

by using the parameter Υ
(ij)
gh .

With matrix representation, the joint probability distrib-
ution over the observations and the latent variables can be
formulated as follows,

Pr(Ψ|Ω) =

mY
j=1

Pr(C(j)|Λ(j))

mY
j=1

Pr(F(j)|Θ(j)C(j))

mY
j=1

Pr(S(j)|(C(j))T Γ(j)C(j))

mY
i=1

mY
j=1

Pr(R(ij)|(C(i))T Υ(ij)C(j))

(1)

where Ψ = {{C(j)}m
j=1, {F(j)}m

j=1, {S(j)}m
j=1, {R(ij)}m

i,j=1},
Pr(C(j)|Λ(j)) =

Qnj

p=1 Multinomial(Λ
(j)
·p , 1),

Pr(F(j)|Θ(j)C(j)) =
Qnj

p=1 Pr(F
(j)
·p |Θ(j)C

(j)
·p ),

Pr(S(j)|(C(j))T Γ(j)C(j)) =
Qnj

p,q=1 Pr(S
(j)
pq |(C(j)

·p )T Γ(j)C
(j)
·q ),

and similarly for R(ij).

4. ALGORITHM DERIVATION
In this section, based on the MMRC model we derive para-

metric soft and hard relational clustering algorithms under
a large number of exponential family distributions.

4.1 MMRC with Exponential Families
To avoid clutter, instead of general relational data, we use

relational data similar to the one in Figure 1(b), which is a
representative relational data set containing all three types
of information for relational data, attributes, homogeneous
relations and heterogeneous relations. However, the deriva-
tion and algorithms are applicable to general relational data.

For the relational data set in Figure 1(b), we have two
types of objects, one attribute matrix F, one homogeneous
relation matrix S and one heterogeneous relation matrix R.
Based on Eq.(1), we have the following likelihood function,

L(Ω|Ψ) = Pr(C(1)|Λ(1))Pr(C(2)|Λ(2))Pr(F|ΘC(1))

Pr(S|(C(1))T ΓC(1))Pr(R|(C(1))T ΥC(2))
(2)

Our goal is to maximize the likelihood function in Eq. (2)
to estimate unknown parameters.

For the likelihood function in Eq.(2), the specific forms of
condition distributions for attributes and relations depend
on specific applications. Presumably, for a specific likelihood
function, we need to derive a specific algorithm. However,
a large number of useful distributions, such as normal dis-
tribution, Poisson distribution, and Bernoulli distributions,
belong to exponential families and the distribution functions
of exponential families can be formulated as a general form.
This nice property facilitates us to derive a general EM al-
gorithm for the MMRC model.

It is shown in the literature [3, 9] that there exists bijection
between exponential families and Bregman divergences [40].
For example, the normal distribution, Bernoulli distribution,
multinomial distribution and exponential distribution cor-
respond to Euclidean distance, logistic loss, KL-divergence
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and Itakura-Satio distance, respectively. Based on the bi-
jection, an exponential family density Pr(x) can always be
formulated as the following expression with a Bregman di-
vergence Dφ,

Pr(x) = exp(−Dφ(x, µ))fφ(x), (3)

where fφ(x) is a uniquely determined function for each ex-
ponential probability density, and µ is the expectation para-
meter. Therefore, for the MMRC model under exponential
family distributions, we have the following,

Pr(F|ΘC(1)) = exp(−Dφ1 (F, ΘC(1)))fφ1 (F) (4)

Pr(S|(C(1))T ΓC(1)) = exp(−Dφ2 (S, (C(1))T ΓC(1)))fφ2 (S)

(5)

Pr(R|(C(1))T ΥC(2)) = exp(−Dφ3 (R, (C(1))T ΥC(2)))fφ3 (R)

(6)

In the above equations, a Bregman divergence of two matri-
ces is defined as the sum of the Bregeman divergence of each
pair of elements from the two matrices. Another advantage
of the above formulation is that under this formulation, the
parameters, Θ, Λ, and Υ, are expectations of intuitive in-
terpretations. Θ consists of center vectors of attributes; Γ
provides an intuitive summary of cluster structure within

the same type objects, since Γ
(1)
gh implies expectation rela-

tions between the gth cluster and the hth cluster of type
1 objects; similarly, Υ provides an intuitive summary for
cluster structures between the different type objects. In the
above formulation, we use different Bregman divergences,
Dφ1 , Dφ2 , and Dφ3 , for the attributes, homogeneous re-
lations and heterogeneous relations, since they could have
different distributions in real applications. For example,

suppose we have Θ(1) =
h

1.1 2.3
1.5 2.5

i
for normal distribu-

tion, Γ(1) =
h

0.9 0.1
0.1 0.7

i
for Bernoulli distribution , and

Υ(12) =
h

1 3
3 1

i
for Poisson distribution, then the cluster

structures of the data are very intuitive. First, the center

attribute vectors for the two clusters of type 1 are
h

1.1
1.5

i
and

h
2.3
2.5

i
; second, by Γ(1) we know that the type 1 nodes

from different clusters are barely related and cluster 1 is
denser that cluster 2; third, by Υ(12) we know that cluster 1
of type 1 nodes are related to cluster 2 of type 2 nodes more
strongly than to cluster 1 of type 2, and so on so forth.

Since the distributions of C(1) and C(2) are modeled as
multinomial distributions, we have the following

Pr(C(1)|Λ(1)) =

n1Y
p=1

k1Y
g=1

(Λ(1)
gp )C

(1)
gp (7)

Pr(C(2)|Λ(2)) =

n2Y
q=1

k2Y
h=1

(Λ
(2)
hq )

C
(2)
hq (8)

Substituting Eqs. (4), (5), (6), (7), and (8) into Eq, (2)
and taking some algebraic manipulations, we obtain the fol-
lowing log-likelihood function for MMRC under exponential
families,

log(L(Ω|Ψ)) =

n1X
p=1

k1X
g=1

C(1)
gp log Λ(1)

gp +

n2X
q=1

k2X
h=1

C
(2)
hq log Λ

(2)
hq

−Dφ1(F, ΘC(1))−Dφ2(S, (C(1))T ΓC(1))

−Dφ3(R, (C(1))T ΥC(2)) + τ

(9)

where τ = log fφ1(F) + log fφ2(S) + log fφ3(R), which is a
constant in the log-likelihood function.

Expectation Maximization (EM) is a general approach
to find the maximum-likelihood estimate of the parameters
when the model has latent variables. EM does maximum
likelihood estimation by iteratively maximizing the expec-
tation of the complete (log-)likelihood, which is the following
under the MMRC model,

Q(Ω, Ω̃) = E[log(L(Ω|Ψ))|C(1),C(2), Ω̃], (10)

where Ω̃ denotes the current estimation of the parameters
and Ω is the new parameters that we optimize to increase Q.
Two steps, E-step and M-step, are alternatively performed
to maximize the objective function in Eq. (10).

4.2 Monte Carlo E-step
In the E-step, based on Bayes’s rule, the posterior proba-

bility of the latent variables,

Pr(C(1),C(2)|F,S,R, Ω̃) =

Pr(C(1),C(2),F,S,R|Ω̃)P
C(1),C(2) Pr(C(1),C(2),F,S,R|Ω̃)

,
(11)

is updated using the current estimation of the parameters.
However, conditioning on observations, the latent variables
are not independent, i.e., there exist dependencies between
the posterior probabilities of C(1) and C(2) , and between

those of C
(1)
·p and C

(1)
·q . Hence, directly computing the pos-

terior based on Eq. (11) is prohibitively expensive.
There exist several techniques for computing intractable

posterior, such as Monte Carlo approaches, belief propa-
gation, and variational methods. We follow a Monte Carlo
approach, Gibbs sampler, which is a method of constructing
a Markov chain whose stationary distribution is the distri-
bution to be estimated.

It is easy to compute the posterior of a latent indicator
vector while fixing all other latent indicator vectors, i.e.,

Pr(C(1)
·p |C(1)

·−p,C(2),F,S,R, Ω̃) =

Pr(C(1),C(2),F,S,R|Ω̃)P
C

(1)
·p

Pr(C(1),C(2),F,S,R|Ω̃)
,

(12)

where C
(1)
·−p denotes all the latent indicator vectors except

for C
(1)
·p . Therefore, we present the following Markov chain

to estimate the posterior in Eq. (11).

• Sample C
(1)
·1

from distribution Pr(C
(1)
·1 |C(1)

·−1,C
(2),F,S,R, Ω̃);

• · · · · · ·
• Sample C

(1)
·n1

from distribution Pr(C
(1)
·n1 |C(1)

·−n1
,C(2),F,S,R, Ω̃);

• Sample C
(2)
·1

from distribution Pr(C
(2)
·1 |C(2)

·−1,C
(1),F,S,R, Ω̃);

• · · · · · ·
• Sample C

(2)
·n2

from distribution Pr(C
(2)
·n2 |C(2)

·−n2
,C(1),F,S,R, Ω̃);

Note that at each sampling step in the above procedure,
we use the latent indicator variables sampled from previous
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steps. The above procedure iterates until the stop crite-
rion is satisfied. It can be shown that the above procedure
is a Markov chain converging to Pr(C(1),C(2)|F,S,R, Ω̃).
Assume that we keep l samples for estimation; then the
posterior can be obtained simply by the empirical joint dis-
tribution of C(1) and C(2) in the l samples.

4.3 M-step
After the E-step, we have the posterior probability of la-

tent variables to evaluate the expectation of the complete
log-likelihood,

Q(Ω, Ω̃) =
X

C(1),C(2)

log(L(Ω|Ψ))Pr(C(1),C(2)|F,S,R, Ω̃).

(13)
In the M-step, we optimize the unknown parameters by

Ω∗ = arg max
Ω

Q(Ω, Ω̃). (14)

First, we derive the update rules for membership parame-

ters Λ(1) and Λ(2). To derive the expression for each Λ
(1)
hp ,

we introduce the Lagrange multiplier α with the constraintPk1
g=1 Λ

(1)
gp = 1, and solve the following equation,

∂

∂Λ
(1)
hp

{Q(Ω, Ω̃) + α(

k1X
g=1

Λ(1)
gp − 1)} = 0. (15)

Substituting Eqs. (9) and (13) into Eq. (15), after some
algebraic manipulations, we have

Pr(C
(1)
hp = 1|F,S,R, Ω̃)− αΛ

(1)
hp = 0. (16)

Summing both sides over h, we obtain α = 1 resulting in
the following update rule,

Λ
(1)
hp = Pr(C

(1)
hp = 1|F,S,R, Ω̃), (17)

i.e., Λ
(1)
hp is updated as the posterior probability that the pth

object is associated with the hth cluster. Similarly, we have

the following update rule for Λ
(2)
hp

Λ
(2)
hp = Pr(C

(2)
hp = 1|F,S,R, Ω̃). (18)

Second, we derive the update rule for Θ. Based on Eqs.
(9) and (13), optimizing Θ is equivalent to the following
optimization,

arg min
Θ

X
C(1),C(2)

Dφ1(F, ΘC(1))Pr(C(1),C(2)|F,S,R, Ω̃).

(19)
We reformulated the above expression as,

arg min
Θ

X
C(1)

k1X
g=1

X
p:C

(1)
gp =1

Dφ1(F·p, Θ·g)Pr(C(1)
gp = 1|F,S,R, Ω̃).

(20)
To solve the above optimization, we make use of an im-

portant property of Bregman divergence presented in the
following theorem.

Theorem 1. Let X be a random variable taking values
in X = {xi}n

i=1 ⊂ S ⊆ Rd following v. Given a Bregman
divergence Dφ : S × int(S) 7→ [0,∞), the problem

min
s∈S

Ev[Dφ(X, s)] (21)

has a unique minimizer given by s∗ = Ev[X].

The proof of Theorem 1 is omitted (please refer [3, 40]).
Theorem 1 states that the Bregman representative of a ran-
dom variable is always the expectation of the variable. Based
on Theorem 1 and the objective function in (20), we update
Θ·g as follows,

Θ·g =

Pn1
p=1 F·pPr(C

(1)
gp = 1|F,S,R, Ω̃)Pn1

p=1 Pr(C
(1)
gp = 1|F,S,R, Ω̃)

. (22)

Third, we derive the update rule for Γ. Based on Eqs.
(9) and (13), we formulate optimizing Γ as the following
optimization,

arg min
Γ

X
C(1)

k1X
g=1

k1X
h=1

X
p:C

(1)
gp =1,

q:C
(1)
hq

=1

Dφ2(Spq, Γgh)p̃, (23)

where p̃ denotes Pr(C
(1)
gp = 1,C

(1)
hq = 1|F,S,R, Ω̃) and 1 ≤

p, q ≤ n1. Based on Theorem 1, we update each Γgh as
follows,

Γgh =

Pn1
p,q=1 SpqPr(C

(1)
gp = 1,C

(1)
hq = 1|F,S,R, Ω̃)Pn1

p,q=1 Pr(C
(1)
gp = 1,C

(1)
hq = 1|F,S,R, Ω̃)

. (24)

Fourth, we derive the update rule for Υ. Based on Eqs.
(9) and (13), we formulate optimizing Υ as the following
optimization,

arg min
Υ

X
C(1),C(2)

k1X
g=1

k2X
h=1

X
p:C

(1)
gp =1,

q:C
(2)
hq

=1

Dφ3(Rpq, Υgh)p̃, (25)

where p̃ denotes Pr(C
(1)
gp = 1,C

(2)
hq = 1|F,S,R, Ω̃) , 1 ≤ p ≤

n1 and 1 ≤ q ≤ n2. Based on Theorem 1, we update each
Γgh as follows,

Υgh =

Pn1
p=1

Pn2
q=1 RpqPr(C

(1)
gp = 1,C

(2)
hq = 1|F,S,R, Ω̃)Pn1

p=1

Pn2
q=1 Pr(C

(1)
gp = 1,C

(2)
hq = 1|F,S,R, Ω̃)

.

(26)
Combining the E-step and M-step, we have a general re-

lational clustering algorithm, Exponential Family MMRC
(EF-MMRC) algorithm, which is summarized in Algorithm
1. Since it is straightforward to apply our algorithm deriva-
tion to a relational data set of any structure, Algorithm 1
is proposed based on the input of a general relational data
set. Despite that the input relational data could have var-
ious structures, EF-MMRC works simply as follows: in the
E-step, EF-MMRC iteratively updates the posterior prob-
abilities that an object is associated with the clusters (the
Markov chain in Section 4.2); in the M-step, based on the
current cluster association (posterior probabilities), the clus-
ter representatives of attributes and relations are updated
as the weighted mean of the observations no matter which
exponential distributions are assumed.

Therefore, with the simplicity of the traditional centroid-
based clustering algorithms, EF-MMRC is capable of mak-
ing use of all attribute information and homogeneous and
heterogenous relation information to learn hidden structures
from various relational data. Since EF-MMRC simultane-
ously clusters multi-type interrelated objects, the cluster
structures of different types of objects may interact with
each other directly or indirectly during the clustering process
to automatically deal with the influence propagation. Be-
sides the local cluster structures for each type of objects,
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Algorithm 1 Exponential Family MMRC Algorithm

Input: A relational data set
{{F(j)}m

j=1, {S(j)}m
j=1, {R(ij)}m

i,j=1}, a set of exponen-
tial family distributions (Bregman divergences) assumed
for the data set.
Output: Membership Matrices {Λ(j)}m

j=1, attribute expec-

tation matrices {Θ(j)}m
j=1, homogeneous relation expecta-

tion matrices {Γ(j)}m
j=1, and heterogeneous relation expec-

tation matrices {Υ(ij)}m
i,j=1.

Method:

1: Initialize the parameters as Ω̃ =
{{Λ̃(j)}m

j=1, {Θ̃(j)}m
j=1, {Γ̃(j)}m

j=1, {Υ̃(ij)}m
i,j=1}.

2: repeat
3: {E-step}
4: Compute the posterior

Pr({C(j)}m
j=1|{F(j)}m

j=1, {S(j)}m
j=1, {R(ij)}m

i,j=1, Ω̃)
using the Gibbs sampler.

5: {M-step}
6: for j = 1 to m do
7: Compute Λ(j) using update rule (17).

8: Compute Θ(j) using update rule (22).

9: Compute Γ(j) using update rule (24).
10: for i = 1 to m do
11: Compute Υ(ij) using update rule (26).
12: end for
13: end for
14: Ω̃ = Ω
15: until convergence

the output of EF-MMRC also provides the summary of the
global hidden structure for the data, i.e., based on Γ and
Υ, we know how the clusters of the same type and differ-
ent types are related to each other. Furthermore, relational
data from different applications may have different proba-
bilistic distributions on the attributes and relations; it is
easy for EF-MMRC to adapt to this situation by simply us-
ing different Bregman divergences corresponding to different
exponential family distributions.

If we assume O(m) types of heterogeneous relations among
m types of objects, which is typical in real applications, and
let n = Θ(ni) and k = Θ(ki), the computational complexity
of EF-MMRC can be shown to be O(tmn2k) for t iterations.
If we apply the k-means algorithm to each type of nodes in-
dividually by transforming the relations into attributes for
each type of nodes, the total computational complexity is
also O(tmn2k).

4.4 Hard MMRC Algorithm
Due to its simplicity, scalability, and broad applicability,

k-means algorithm has become one of the most popular clus-
tering algorithms. Hence, it is desirable to extend k-means
to relational data. Some efforts [47, 2, 12, 33] in the lit-
erature work in this direction. However, these approaches
apply to only some special and simple cases of relational
data, such as bi-type heterogeneous relational data.

As traditional k-means can be formulated as a hard ver-
sion of Gaussian mixture model EM algorithm [29], we pro-
pose the hard version of MMRC algorithm as a general rela-
tional k-means algorithm (from now on, we call Algorithm 1
as soft EF-MMRC), which applies to various relational data.

To derive the hard version MMRC algorithm, we omit soft
membership parameters Λ(j) in the MMRC model (C(j) in

the model provides the hard membership for each object).
Next, we change the computation of the posterior proba-
bilities in the E-step to reassignment procedure, i.e., in the
E-step, based on the estimation of the current parameters,
we re-assign cluster labels, {C(j)}m

j=1, to maximize the ob-
jective function in (9). In particular, for each object, while
fixing the cluster assignments of all other objects, we assign
it to each cluster to find the optimal cluster assignment max-
imizing the objective function in (9), which is equivalent to
minimizing the Bregman distances between the observations
and the corresponding expectation parameters. After all
objects are assigned, the re-assignment process is repeated
until no object changes its cluster assignment between two
successive iterations.

In the M-step, we estimate the parameters based on the
cluster assignments from the E-step. A simple way to derive
the update rules is to follow the derivation in Section 4.3 but
replace the posterior probabilities by its hard versions. For

example, after the E-step, if the object x
(j)
p is assigned to

the gth cluster, i.e., C
(j)
gp = 1, then the posterior Pr(C

(1)
gp =

1|F,S,R, Ω̃) = 1 and Pr(C
(1)
hp = 1|F,S,R, Ω̃) = 0 for h 6= g.

Using the hard versions of the posterior probabilities, we
derive the following update rule for Θ(j),

Θ(j)
·g =

P
p:C

(j)
gp =1

F
(j)
·pPnj

p=1 C
(j)
gp

. (27)

In the above update rule, since
Pn1

p=1 C
(j)
gp is the size of the

gth cluster, Θ
(j)
·g is actually updated as the mean of the

attribute vectors of the objects assigned to the gth cluster.
Similarly, we have the following update rule for Γ(j)

Γ
(j)
gh =

P
p:C

(j)
gp =1,q:C

(j)
hq

=1
S

(j)
pqPnj

p=1 C
(j)
gp

Pnj

q=1 C
(j)
hq

, (28)

i.e., Γ
(j)
gh is updated as the mean of the relations between the

objects of the jth type from the gth cluster and from the
hth cluster.

Each heterogeneous relation expectation parameter Υ
(ij)
gh

is updated as the mean of the objects of the ith type from
the gth cluster and of the jth type from the hth cluster,

Υ
(ij)
gh =

P
p:C

(i)
gp =1,q:C

(j)
hq

=1
R

(ij)
pqPni

p=1 C
(i)
gp

Pnj

q=1 C
(j)
hq

. (29)

The hard version of EF-MMRC algorithm is summarized
in Algorithm 2. It works simply as the classic k-means.
However, it is applicable to various relational data under
various Bregman distance functions corresponding to vari-
ous assumptions of probability distributions. Based on the
EM framework, its convergence is guaranteed. When ap-
plied to some special cases of relational data, it provides
simple and new algorithms for some important data mining
problems. For example, when applied to the data of one
homogeneous relation matrix representing a graph affinity
matrix, it provides a simple and new graph partitioning al-
gorithm.

Based on Algorithms 1 and 2, there is another version of
EF-MMRC, i.e., we may combine soft and hard EF-MMRC
together to have mixed EF-MMRC. For example, we first
run hard EF-MMRC several times as initialization, then run
soft EF-MMRC.
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Algorithm 2 Hard MMRC Algorithm

Input: A relational data set
{{F(j)}m

j=1, {S(j)}m
j=1, {R(ij)}m

i,j=1}, a set of exponen-
tial family distributions (Bregman divergences) assumed
for the data set.
Output: Cluster indicator matrices {C(j)}m

j=1, attribute

expectation matrices {Θ(j)}m
j=1, homogeneous relation ex-

pectation matrices {Γ(j)}m
j=1, and heterogeneous relation ex-

pectation matrices {Υ(ij)}m
i,j=1.

Method:
1: Initialize the parameters as Ω̃ =
{{Λ̃(j)}m

j=1, {Θ̃(j)}m
j=1, {Γ̃(j)}m

j=1, {Υ̃(ij)}m
i,j=1}.

2: repeat
3: {E-step}
4: Based on the current parameters, reassign cluster la-

bels for each objects, i.e., update {C(j)}m
j=1, to maxi-

mize the objective function in Eq. (9).
5: {M-step}
6: for j = 1 to m do
7: Compute Θ(j) using update rule (27).

8: Compute Γ(j) using update rule (28).
9: for i = 1 to m do

10: Compute Υ(ij) using update rule (29).
11: end for
12: end for
13: Ω̃ = Ω
14: until convergence

5. A UNIFIED VIEW TO CLUSTERING
In this section we discuss the connections between exist-

ing clustering approaches and the MMRF model and EF-
MMRF algorithms. By considering them as special cases or
variations of the MMRF model, we show that MMRF pro-
vides a unified view to the existing clustering approaches
from various important data mining applications.

5.1 Semi-supervised Clustering
Recently, semi-supervised clustering has become a topic

of significant interest [4, 46], which seeks to cluster a set of
data points with a set of pairwise constraints.

Semi-supervised clustering can be formulated as a special
case of relational clustering, clustering on the single-type re-
lational data set consisting of attributes F and homogeneous
relations S. For semi-supervised clustering, Spq denotes the
pairwise constraint on the pth object and the qth object.

[4] provides a general model for semi-supervised clustering
based on Hidden Markov Random Fields (HMRFs). We
show that it can be formulated as a special case of MMRC
model. As in [4], we define the homogeneous relation matrix
S as follows,

Spq =

8<: fM (xp, xq) if (xp, xq) ∈M
fC(xp, xq) if (xp, xq) ∈ C

0 otherwise

where M denotes a set of must-link constraints; C denotes a
set of cannot-link constraints; fM (xp, xq) is a function that
penalizes the violation of must-link constraint; fC(xp, xq)
is a penalty function for cannot-links. If we assume Gibbs
distribution [41] for S,

Pr(S) =
1

z1
exp(−

X
p,q

Spq). (30)

where z1 is the normalization constant. Since [4] focuses on

only hard clustering, we omit the soft member parameters
in the MMRC model to consider hard clustering. Based on
Eq.(30) and Eq.(4), the likelihood function of hard semi-
supervised clustering under MMRC model is

L(Θ|F) =
1

z
exp(−

X
p,q

Spq) exp(−Dφ(F, ΛC)) (31)

Since C is an indicator matrix, Eq. (31) can be formulated
as

L(Θ|F) =
1

z
exp(−

X
p,q

Spq) exp(−
kX

g=1

X
p:Cgp=1

Dφ(F·p, Λ·g))

(32)
The above likelihood function is equivalent to the objec-
tive function of semi-supervised clustering based on HMRFs
[4]. Furthermore, when applied to optimizing the objective
function in Eq.(32), hard MMRC provides a family of semi-
supervised clustering algorithms similar to HMRF-KMeans
in [4]; on the other hand, soft EF-MMRC provides new and
soft version semi-supervised clustering algorithms.

5.2 Co-clustering
Co-clustering or bi-clustering arise in many important ap-

plications, such as document clustering, micro-array data
clustering.A number of approaches [12, 8, 33, 2] have been
proposed for co-clustering. These efforts can be generalized
as solving the following matrix approximation problem [34],

arg min
C,Υ

D(R, (C(1))T ΥC(2)) (33)

where R ∈ Rn1×n2 is the data matrix , C(1) ∈ {0, 1}k1×n1

and C(2) ∈ {0, 1}k2×n2 are indicator matrices, Υ ∈ Rk1×k2

is the relation representative matrix, and D is a distance
function. For example, [12] uses KL-divergences as the dis-
tance function; [8, 33] use Euclidean distances.

Co-clustering is equivalent to clustering on relational data
of one heterogeneous relation matrix R. Based on Eq.(9),
by omitting the soft membership parameters, maximizing
log-likelihood function of hard clustering on a heterogeneous
relation matrix under the MMRC model is equivalent to the
minimization in (33). The algorithms proposed in [12, 8, 33,
2] can be viewed as special cases of hard EF-MMRC. At the
same time, soft EF-MMRC provides another family of new
algorithms for co-clustering.

Our previous work [34] proposes the relation summary
network model for clustering k-partite graphs, which can
be shown to be equivalent on clustering on relational data
of multiple heterogeneous relation matrices. The proposed
algorithms in [34] can also be viewed as special cases of the
hard EF-MMRC algorithm.

5.3 Graph Clustering
Graph clustering (partitioning) is an important problem

in many domains, such as circuit partitioning, VLSI design,
task scheduling. Existing graph partitioning approaches are
mainly based on edge cut objectives, such as Kernighan-
Lin objective [30], normalized cut [42], ratio cut [7], ratio
association[42], and min-max cut [13].

Graph clustering is equivalent to clustering on single-type
relational data of one homogeneous relation matrix S. The
log-likelihood function of the hard clustering under MMRC
model is −Dφ(S, (C)T ΓC). We propose the following theo-
rem to show that the edge cut objectives are mathematically
equivalent to a special case of the MMRC model. Since most
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graph partitioning objective functions use weighted indica-
tor matrix such that CCT = Ik, where Ik is an identity
matrix, we follow this formulation in the following theorem.

Theorem 2. With restricting Γ to be the form of rIk for
r > 0, maximizing the log-likelihood of hard MMRC cluster-
ing on S under normal distribution, i.e.,

max
C∈{0,1}k×n,CCT =Ik

−||S− (C)T (rIk)C||2, (34)

is equivalent to the trace maximization

max tr(CSCT ), (35)

where tr denots the trace of a matrix.

Proof. Let L denote the objective function in Eq. (34).

L = −||S− rCT C||2
= −tr((S− rCT C)T (S− rCT C))

= −tr(ST S) + 2rtr(CT CS)− r2tr(CT CCT C)

= −tr(ST S) + 2rtr(CSCT )− r2k

The above deduction uses the property of trace tr(XY) =
tr(YX). Since tr(ST S), r and k are constants, the maxi-
mization of L is equivalent to the maximization of tr(CSCT ).
The proof is completed.

Since it is shown in the literature [10] that the edge cut ob-
jectives can be formulated as the trace maximization, The-
orem 2 states that edge-cut based graph clustering is equiv-
alent to MMRC model under normal distribution with the
diagonal constraint on the parameter matrix Γ. This con-
nection provides not only a new understanding for graph
partitioning but also a family of new algorithms (soft and
hard MMRC algorithms) for graph clustering.

Finally, we point out that MMRC model does not ex-
clude traditional attribute-based clustering. When applied
to an attribute data matrix under Euclidean distances, hard
MMRC algorithm is actually reduced to the classic k-means;
soft MMRC algorithm is very close to the traditional mix-
ture model EM clustering except that it does not involve
mixing proportions in the computation.

In summary, MMRC model provides a principal frame-
work to unify various important clustering tasks includ-
ing traditional attributes-based clustering, semi-supervised
clustering, co-clustering and graph clustering; soft and hard
EF-MMRC algorithms unify a number of stat-of-the-art clus-
tering algorithms and at the same time provide new solu-
tions to various clustering tasks.

6. EXPERIMENTS
This section provides empirical evidence to show the ef-

fectiveness of the MMRC model and algorithms. Since a
number of stat-of-the-art clustering algorithms [12, 8, 33,
2, 3, 4] can be viewed as special cases of EF-MMRC model
and algorithms, the experimental results in these efforts also
illustrate the effectiveness of the MMRC model and algo-
rithms. In this paper, we apply MMRC algorithms to tasks
of graph clustering, bi-clustering, tri-clusering, and cluster-
ing on a general relational data set of all three types of infor-
mation. In the experiments, we use mixed version MMRC,
i.e., hard MMRC initialization followed by soft MMRC. Al-
though MMRC can adopt various distribution assumptions,
due to space limit, we use MMRC under normal or Poisson
distribution assumption in the experiments. However, this

Table 1: Summary of relational data for Graph Clus-
tering.

Name n k Balance Source

tr11 414 9 0.046 TREC
tr23 204 6 0.066 TREC

NG1-20 14000 20 1.0 20-newsgroups
k1b 2340 6 0.043 WebACE

tr11 rr23 NG1−20 k1b
0.2

0.25

0.3

0.35

0.4

0.45
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SGP
METIS
MMRC

Figure 2: NMI comparison of SGP, METIS and
MMRC algorithms.

does not imply that they are optimal distribution assump-
tions for the data. How to decide the optimal distribution
assumption is beyond the scope of this paper.

For performance measure, we elect to use the Normalized
Mutual Information (NMI) [44] between the resulting cluster
labels and the true cluster labels, which is a standard way
to measure the cluster quality. The final performance score
is the average of ten runs.

6.1 Graph Clustering
In this section, we present experiments on the MMRC

algorithm under normal distribution in comparison with two
representative graph partitioning algorithms, the spectral
graph partitioning (SGP) from [36] that is generalized to
work with both normalized cut and ratio association, and
the classic multilevel algorithm, METIS [28].

The graphs based on the text data have been widely used
to test graph partitioning algorithms [13, 11, 25]. In this
study, we use various data sets from the 20-newsgroups [32],
WebACE and TREC [27], which cover data sets of different
sizes, different balances and different levels of difficulties.
The data are pre-processed by removing the stop words and
each document is represented by a term-frequency vector
using TF-IDF weights. Then we construct relational data
for each text data set such that objects (documents) are
related to each other with cosine similarities between the
term-frequency vectors. A summary of all the data sets
to construct relational data used in this paper is shown in
Table 1, in which n denotes the number of objects in the
relational data, k denotes the number of true clusters, and
balance denotes the size ratio of the smallest clusters to the
largest clusters.

For the number of clusters k, we simply use the number
of the true clusters. Note that how to choose the optimal
number of clusters is a nontrivial model selection problem
and beyond the scope of this paper.

Figure 2 shows the NMI comparison of the three algo-
rithms. We observe that although there is no single winner
on all the graphs, overall the MMRC algorithm performs
better than SGP and METIS. Especially on the difficult
data set tr23, MMRC increases performance about 30%.
Hence, MMRC under normal distribution provides a new
graph partitioning algorithm which is viable and competi-
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Data set Taxonomy structure
TT-TM1 {rec.sport.baseball, rec.sport.hockey},

{talk.politics.guns, talk.politics.mideast,
talk.politics.misc}

TT-TM2 {comp.graphics, comp.os.ms-windows.misc},
{rec.autos, rec.motorcycles},
{sci.crypt, sci.electronics}

Table 3: Taxonomy structures of two data sets for
constructing tri-partite relational data

BT−NG1 BT−NG2 BT−NG3
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Figure 3: NMI comparison of BSGP, RSN and
MMRC algorithms for bi-type data.

tive compared with the two existing state-of-the-art graph
partitioning algorithms. Note that although the normal dis-
tribution is most popular, MMRC under other distribution
assumptions may be more desirable in specific graph clus-
tering applications depends on the statistical properties of
the graphs.

6.2 Bi-clustering and Tri-clustering
In this section, we apply the MMRC algorithm under

Poisson distribution to clustering bi-type relational data,
word-document data, and tri-type relational data, word-
document-category data. Two algorithms, Bi-partite Spec-
tral Graph partitioning (BSGP) [11] and Relation Summary
Network under Generalized I-divergence (RSN-GI) [34], are
used as comparison in bi-clustering. For tri-clustering, Con-
sistent Bipartite Graph Co-partitioning (CBGC) [18] and
RSN-GI are used as comparison.

The bi-type relational data, word-document data, are con-
structed based on various subsets of the 20-Newsgroup data.
We pre-process the data by selecting the top 2000 words
by the mutual information. The document-word matrix is
based on tf.idf weighting scheme and each document vector
is normalized to a unit L2 norm vector. Specific details of
the data sets are listed in Table 2. For example, for the data
set BT-NG3 we randomly and evenly sample 200 documents
from the corresponding newsgroups; then we formulate a bi-
type relational data set of 1600 document and 2000 word.

The tri-type relational data are built based on the 20-
newsgroups data for hierarchical taxonomy mining. In the
field of text categorization, hierarchical taxonomy classifica-

TT−TM1 TT−TM2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

I

CBGC
RSN
MMRC

Figure 4: NMI comparison of CBGC, RSN and
MMRC algorithms for tri-type data.

cluster 23 of actors

Viggo Mortensen, Sean Bean, Miranda Otto,
Ian Holm, Christopher Lee, Cate Blanchett,
Ian McKellen ,Liv Tyler , David Wenham ,

Brad Dourif , John Rhys-Davies , Elijah Wood ,
Bernard Hill , Sean Astin , Andy Serkis ,

Dominic Monaghan , Karl Urban , Orlando Bloom ,
Billy Boyd ,John Noble, Sala Baker

cluster 118 of movies

The Lord of the Rings: The Fellowship of the Ring (2001)
The Lord of the Rings: The Two Towers (2002)

The Lord of the Rings: The Return of the King (2003)

Table 4: Two clusters from actor-movie data

tion is widely used to obtain a better trade-off between effec-
tiveness and efficiency than flat taxonomy classification. To
take advantage of hierarchical classification, one must mine a
hierarchical taxonomy from the data set. We see that words,
documents, and categories formulate a sandwich structure
tri-type relational data set, in which documents are central
type nodes. The links between documents and categories
are constructed such that if a document belongs to k cate-
gories, the weights of links between this document and these
k category nodes are 1/k (please refer [18] for details). The
true taxonomy structures for two data sets, TP-TM1 and
TP-TM2, are documented in Table 3.

Figure 3 and Figure 4 show the NMI comparison of the
three algorithms on bi-type and tri-type relational data, re-
spectively. We observe that the MMRC algorithm performs
significantly better than BSGP and CBGC. MMRC per-
forms slightly better than RSN on some data sets. Since
RSN is a special case of hard MMRC, this shows that mixed
MMRC improves hard MMRC’s performance on the data
sets. Therefore, compared with the existing stated-of-the-
art algorithms, the MMRC algorithm performs more effec-
tively on these bi-clustering or tri-clustering tasks and on
the other hand, it is flexible for different types of multi-
clustering tasks which may be more complicated than tri-
type clustering.

6.3 A Case Study on Actor-movie Data
We also run the MMRC algorithm on the actor-movie re-

lational data based on IMDB movie data set for a case study.
In the data, actors are related to each other by collabora-
tion (homogeneous relations); actors are related to movies
by taking roles in movies (heterogeneous relations); movies
have attributes such as release time and rating (note that
there is no links between movies). Hence the data have all
the three types of information. We formulate a data set of
20000 actors and 4000 movies. We run experiments with
k = 200. Although there is no ground truth for the data’s
cluster structure, we observe that most resulting clusters
that are actors or movies of the similar style such as action,
or tight groups from specific movie serials. For example, Ta-
ble 4 shows cluster 23 of actors and cluster 118 of movies; the
parameter Υ23,118 shows that these two clusters are strongly
related to each other. In fact, the actor cluster contains the
actors in the movie series ”The Lord of the Rings”. Note
that if we only have one type of actor objects, we only get
the actor clusters, but with two types of nodes, although
there is no links between the movies, we also get the related
movie clusters to explain how the actors are related.

7. CONCLUSIONS
In this paper, we propose a probabilistic model for re-

lational clustering, which provides a principal framework
to unify various important clustering tasks including tradi-
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Dataset Newsgroups Included # Documents Total #
Name per Group Documents
BT-NG1 rec.sport.baseball, rec.sport.hockey 200 400
BT-NG2 comp.os.ms-windows.misc, comp.windows.x, rec.motorcycles,

sci.crypt, sci.space 200 1000
BT-NG3 comp.os.ms-windows.misc, comp.windows.x, misc.forsale,

rec.motorcycles,rec.motorcycles,sci.crypt, sci.space,
talk.politics.mideast, talk.religion.misc 200 1600

Table 2: Subsets of Newsgroup Data for bi-type relational data

tional attributes-based clustering, semi-supervised cluster-
ing, co-clustering and graph clustering. Under this model,
we propose parametric hard and soft relational clustering
algorithms under a large number of exponential family dis-
tributions. The algorithms are applicable to relational data
of various structures and at the same time unify a number
of stat-of-the-art clustering algorithms. The theoretic analy-
sis and experimental evaluation show the effectiveness and
great potential of the proposed model and algorithms.
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